
Jay G Slowik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/326679/publications.pdf Version: 2024-02-01

INV C SLOWIK

#	Article	IF	CITATIONS
1	High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514, 218-222.	27.8	3,582
2	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Science and Technology, 2004, 38, 1185-1205.	3.1	811
3	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	4.9	641
4	Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. Journal of Geophysical Research, 2006, 111, .	3.3	594
5	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 2012, 12, 1649-1665.	4.9	449
6	SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmospheric Measurement Techniques, 2013, 6, 3649-3661.	3.1	433
7	Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmospheric Chemistry and Physics, 2013, 13, 961-981.	4.9	391
8	New insights into PM _{2.5} chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 3207-3225.	4.9	300
9	Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmospheric Measurement Techniques, 2011, 4, 445-461.	3.1	298
10	An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles. Aerosol Science and Technology, 2007, 41, 295-314.	3.1	276
11	A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer. Aerosol Science and Technology, 2007, 41, 125-135.	3.1	258
12	The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation. Atmospheric Chemistry and Physics, 2010, 10, 5047-5064.	4.9	245
13	Soot Particle Studies—Instrument Inter-Comparison—Project Overview. Aerosol Science and Technology, 2010, 44, 592-611.	3.1	228
14	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio. Aerosol Science and Technology, 2004, 38, 1206-1222.	3.1	212
15	Laboratory and Ambient Particle Density Determinations using Light Scattering in Conjunction with Aerosol Mass Spectrometry. Aerosol Science and Technology, 2007, 41, 343-359.	3.1	208
16	Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmospheric Chemistry and Physics, 2013, 13, 9141-9158.	4.9	207
17	The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection. Atmospheric Measurement Techniques, 2013, 6, 3225-3241.	3.1	184
18	Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change. Atmospheric Chemistry and Physics, 2007, 7, 4187-4201.	4.9	182

#	Article	IF	CITATIONS
19	Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests. Atmospheric Chemistry and Physics, 2010, 10, 2825-2845.	4.9	164
20	Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmospheric Chemistry and Physics, 2015, 15, 1299-1312.	4.9	163
21	Products and Mechanisms of Ozone Reactions with Oleic Acid for Aerosol Particles Having Coreâ°'Shell Morphologies. Journal of Physical Chemistry A, 2004, 108, 6686-6695.	2.5	156
22	ldentification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1950-1963.	3.3	142
23	Identification of significant precursor gases of secondary organic aerosols from residential wood combustion. Scientific Reports, 2016, 6, 27881.	3.3	141
24	Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Scientific Reports, 2017, 7, 4926.	3.3	133
25	Mass Absorption Cross-Section of Ambient Black Carbon Aerosol in Relation to Chemical Age. Aerosol Science and Technology, 2009, 43, 522-532.	3.1	132
26	Two-stroke scooters are a dominant source of air pollution in many cities. Nature Communications, 2014, 5, 3749.	12.8	126
27	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measurement Techniques, 2015, 8, 2555-2576.	3.1	118
28	Effective Henry's Law Partitioning and the Salting Constant of Glyoxal in Aerosols Containing Sulfate. Environmental Science & Technology, 2013, 47, 4236-4244.	10.0	115
29	Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition. Atmospheric Measurement Techniques, 2015, 8, 2315-2332.	3.1	110
30	Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 2016, 9, 23-39.	3.1	110
31	Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis. Atmospheric Chemistry and Physics, 2015, 15, 6993-7002.	4.9	106
32	ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	3.1	104
33	Characterization of primary and secondary wood combustion products generated under different burner loads. Atmospheric Chemistry and Physics, 2015, 15, 2825-2841.	4.9	99
34	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Cooking Emissions. Environmental Science & Technology, 2016, 50, 1243-1250.	10.0	97
35	Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment. Atmospheric Chemistry and Physics, 2013, 13, 8411-8426.	4.9	96
36	Light scattering and absorption by fractal-like carbonaceous chain aggregates: comparison of theories and experiment. Applied Optics, 2007, 46, 6990.	2.1	93

#	Article	IF	CITATIONS
37	Measurements of Morphology Changes of Fractal Soot Particles using Coating and Denuding Experiments: Implications for Optical Absorption and Atmospheric Lifetime. Aerosol Science and Technology, 2007, 41, 734-750.	3.1	92
38	In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmospheric Chemistry and Physics, 2015, 15, 9577-9591.	4.9	92
39	An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles. Atmospheric Measurement Techniques, 2019, 12, 4867-4886.	3.1	91
40	Simultaneous factor analysis of organic particle and gas mass spectra: AMS and PTR-MS measurements at an urban site. Atmospheric Chemistry and Physics, 2010, 10, 1969-1988.	4.9	90
41	Inorganic Salt Interference on CO ₂ ⁺ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies. Environmental Science & Technology, 2016, 50, 10494-10503.	10.0	88
42	Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: fresh and aged residential wood combustion emissions. Atmospheric Chemistry and Physics, 2017, 17, 705-720.	4.9	79
43	Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer. Atmospheric Measurement Techniques, 2017, 10, 2061-2076.	3.1	79
44	Long-term chemical analysis and organic aerosol source apportionment at nine sites in central Europe: source identification and uncertainty assessment. Atmospheric Chemistry and Physics, 2017, 17, 13265-13282.	4.9	78
45	Real-time measurement and source apportionment of elements in Delhi's atmosphere. Science of the Total Environment, 2020, 742, 140332.	8.0	78
46	Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol. Atmospheric Chemistry and Physics, 2011, 11, 2991-3006.	4.9	77
47	Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. Atmospheric Chemistry and Physics, 2018, 18, 17843-17861.	4.9	77
48	The first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in the summer of 2012, and an investigation of the role of Cl atom oxidation. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5638-5657.	3.3	76
49	Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Applied Energy, 2015, 155, 204-217.	10.1	76
50	Organic aerosol source apportionment by offline-AMS over a full year in Marseille. Atmospheric Chemistry and Physics, 2017, 17, 8247-8268.	4.9	75
51	Quantification of aerosol chemical composition using continuous single particle measurements. Atmospheric Chemistry and Physics, 2011, 11, 7027-7044.	4.9	72
52	Observations of OM/OC and specific attenuation coefficients (SAC) in ambient fine PM at a rural site in central Ontario, Canada. Atmospheric Chemistry and Physics, 2010, 10, 2393-2411.	4.9	71
53	Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter. Atmospheric Chemistry and Physics, 2015, 15, 11291-11309.	4.9	71
54	Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Scientific Reports, 2015, 5, 11801.	3.3	71

#	Article	IF	CITATIONS
55	Evolution of the chemical fingerprint of biomass burning organic aerosol during aging. Atmospheric Chemistry and Physics, 2018, 18, 7607-7624.	4.9	67
56	On the fate of oxygenated organic molecules in atmospheric aerosol particles. Science Advances, 2020, 6, eaax8922.	10.3	63
57	Temperature response of the submicron organic aerosol from temperate forests. Atmospheric Environment, 2011, 45, 6696-6704.	4.1	62
58	Chemical characterization of PM2.5 and source apportionment of organic aerosol in New Delhi, India. Science of the Total Environment, 2020, 745, 140924.	8.0	60
59	Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe. Atmospheric Chemistry and Physics, 2017, 17, 117-141.	4.9	59
60	Impact of model grid spacing on regional- and urban- scale air quality predictions of organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 3107-3118.	4.9	57
61	Size-Resolved Identification, Characterization, and Quantification of Primary Biological Organic Aerosol at a European Rural Site. Environmental Science & Technology, 2016, 50, 3425-3434.	10.0	57
62	Gas-phase composition and secondary organic aerosol formation from standard and particle filter-retrofitted gasoline direct injection vehicles investigated in a batch and flow reactor. Atmospheric Chemistry and Physics, 2018, 18, 9929-9954.	4.9	57
63	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS) – PartÂ2: Biomass burning influences in winter. Atmospheric Chemistry and Physics, 2019, 19, 8037-8062.	4.9	57
64	Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) – chemical composition, origins and organic aerosol sources. Atmospheric Chemistry and Physics, 2015, 15, 11373-11398.	4.9	55
65	Observation of viscosity transition in <i>α</i> -pinene secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 4423-4438.	4.9	55
66	Slower CCN growth kinetics of anthropogenic aerosol compared to biogenic aerosol observed at a rural site. Atmospheric Chemistry and Physics, 2010, 10, 299-312.	4.9	54
67	Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products. Atmospheric Chemistry and Physics, 2010, 10, 5075-5088.	4.9	54
68	Low Fractal Dimension Cluster-Dilute Soot Aggregates from a Premixed Flame. Physical Review Letters, 2009, 102, 235504.	7.8	51
69	Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential. Scientific Reports, 2016, 6, 36623.	3.3	51
70	A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data. Atmospheric Measurement Techniques, 2021, 14, 923-943.	3.1	50
71	Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China. Atmospheric Chemistry and Physics, 2018, 18, 4005-4017.	4.9	49
72	The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study. Atmospheric Chemistry and Physics, 2013, 13, 6493-6506.	4.9	48

#	Article	IF	CITATIONS
73	Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency. Atmospheric Environment, 2017, 169, 65-79.	4.1	48
74	Measurements of VOCs by proton transfer reaction mass spectrometry at a rural Ontario site: Sources and correlation to aerosol composition. Journal of Geophysical Research, 2009, 114, .	3.3	47
75	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmospheric Chemistry and Physics, 2016, 16, 1693-1712.	4.9	47
76	Kerb and urban increment of highly time-resolved trace elements in PM ₁₀ , PM _{2.5} and PM _{1.0} winter aerosol in London during ClearfLo 2012. Atmospheric Chemistry and Physics, 2015, 15, 2367-2386.	4.9	46
77	Oxidation of ambient biogenic secondary organic aerosol by hydroxyl radicals: Effects on cloud condensation nuclei activity. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	44
78	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	5.3	44
79	High contributions of vehicular emissions to ammonia in three European cities derived from mobile measurements. Atmospheric Environment, 2018, 175, 210-220.	4.1	42
80	Real-Time Measurements of PM _{2.5} Oxidative Potential Using a Dithiothreitol Assay in Delhi, India. Environmental Science and Technology Letters, 2020, 7, 504-510.	8.7	42
81	Source characterization of volatile organic compounds measured by proton-transfer-reaction time-of-flight mass spectrometers in Delhi, India. Atmospheric Chemistry and Physics, 2020, 20, 9753-9770.	4.9	42
82	Comment on "The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometerâ€. Aerosol Science and Technology, 2016, 50, i-xv.	3.1	39
83	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometerÂ(EESI-TOF-MS) – PartÂ1: Biogenic influences and day–night chemistry in summer. Atmospheric Chemistry and Physics, 2019, 19, 14825-14848.	4.9	38
84	Characteristics and sources of hourly elements in PM10 and PM2.5 during wintertime in Beijing. Environmental Pollution, 2021, 278, 116865.	7.5	38
85	Assessing the influence of NO concentrations and relative humidity on secondary organic aerosol yields from <i>î±</i> -pinene photo-oxidation through smog chamber experiments and modelling calculations. Atmospheric	4.9	37
86	Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland. Atmospheric Chemistry and Physics, 2020, 20, 1657-1674.	4.9	37
87	Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe. Atmospheric Chemistry and Physics, 2016, 16, 5513-5529.	4.9	35
88	Effect of Stove Technology and Combustion Conditions on Gas and Particulate Emissions from Residential Biomass Combustion. Environmental Science & amp; Technology, 2019, 53, 2209-2219.	10.0	35
89	Real-time characterization and source apportionment of fine particulate matter in the Delhi megacity area during late winter. Science of the Total Environment, 2021, 770, 145324.	8.0	35
90	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	4.9	33

#	Article	IF	CITATIONS
91	A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra. Atmospheric Chemistry and Physics, 2012, 12, 2189-2203.	4.9	32
92	Real-time, controlled OH-initiated oxidation of biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 2012, 12, 9775-9790.	4.9	31
93	Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements. Atmospheric Chemistry and Physics, 2016, 16, 7117-7134.	4.9	31
94	Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions. Atmospheric Chemistry and Physics, 2018, 18, 6985-7000.	4.9	31
95	Predominance of secondary organic aerosol to particle-bound reactive oxygen species activity in fine ambient aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14703-14720.	4.9	31
96	Brown Carbon in Primary and Aged Coal Combustion Emission. Environmental Science & Technology, 2021, 55, 5701-5710.	10.0	31
97	Elucidating determinants of aerosol composition through particle-type-based receptor modeling. Atmospheric Chemistry and Physics, 2011, 11, 8133-8155.	4.9	30
98	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Residential Coal Combustion. Environmental Science & Technology, 2018, 52, 2612-2617.	10.0	30
99	Improved source apportionment of organic aerosols in complex urban air pollution using the multilinear engine (ME-2). Atmospheric Measurement Techniques, 2018, 11, 1049-1060.	3.1	28
100	Primary and secondary organic aerosols in urban air masses intercepted at a rural site. Journal of Geophysical Research, 2010, 115, .	3.3	27
101	Online Aerosol Chemical Characterization by Extractive Electrospray Ionization–Ultrahigh-Resolution Mass Spectrometry (EESI-Orbitrap). Environmental Science & Technology, 2020, 54, 3871-3880.	10.0	25
102	Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2011, 11, 5745-5760.	4.9	24
103	Effects of alkylate fuel on exhaust emissions and secondary aerosol formation of a 2-stroke and a 4-stroke scooter. Atmospheric Environment, 2014, 94, 307-315.	4.1	24
104	Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set. Atmospheric Chemistry and Physics, 2019, 19, 11461-11484.	4.9	24
105	Dissociative Ionization Mechanism and Appearance Energies in Adipic Acid Revealed by Imaging Photoelectron Photoion Coincidence, Selective Deuteration, and Calculations. Journal of Physical Chemistry A, 2016, 120, 3397-3405.	2.5	22
106	Critical Role of Simultaneous Reduction of Atmospheric Odd Oxygen for Winter Haze Mitigation. Environmental Science & Technology, 2021, 55, 11557-11567.	10.0	21
107	Real-Time Detection of Aerosol Metals Using Online Extractive Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2020, 92, 1316-1325.	6.5	20
108	Sources and characteristics of light-absorbing fine particulates over Delhi through the synergy of real-time optical and chemical measurements. Atmospheric Environment, 2021, 252, 118338.	4.1	20

#	Article	IF	CITATIONS
109	Quantification of solid fuel combustion and aqueous chemistry contributions to secondary organic aerosol during wintertime haze events in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 9859-9886.	4.9	20
110	Diurnal variability in the spectral characteristics and sources of water-soluble brown carbon aerosols over Delhi. Science of the Total Environment, 2021, 794, 148589.	8.0	20
111	A 1-year characterization of organic aerosol composition and sources using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Atmospheric Chemistry and Physics, 2020, 20, 7875-7893.	4.9	20
112	Morphology based particle segregation by electrostatic charge. Journal of Aerosol Science, 2008, 39, 785-792.	3.8	19
113	An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors. Atmospheric Measurement Techniques, 2017, 10, 3609-3625.	3.1	19
114	Influence of the vapor wall loss on the degradation rate constants in chamber experiments of levoglucosan and other biomass burning markers. Atmospheric Chemistry and Physics, 2018, 18, 10915-10930.	4.9	19
115	Highly time-resolved measurements of element concentrations in PM ₁₀ and PM _{2.5} : comparison of Delhi, Beijing, London, and Krakow. Atmospheric Chemistry and Physics, 2021, 21, 717-730.	4.9	19
116	Characteristics of VOC Composition at Urban and Suburban Sites of New Delhi, India in Winter. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	18
117	Non-linear photochemical pathways in laser-induced atmospheric aerosol formation. Scientific Reports, 2015, 5, 14978.	3.3	17
118	Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra. Atmospheric Chemistry and Physics, 2014, 14, 8017-8042.	4.9	16
119	Wood combustion particles induce adverse effects to normal and diseased airway epithelia. Environmental Sciences: Processes and Impacts, 2017, 19, 538-548.	3.5	14
120	Identification of secondary aerosol precursors emitted by an aircraft turbofan. Atmospheric Chemistry and Physics, 2018, 18, 7379-7391.	4.9	14
121	The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met. Atmospheric Chemistry and Physics, 2011, 11, 3195-3210.	4.9	13
122	Analysis of cloud condensation nuclei composition and growth kinetics using a pumped counterflow virtual impactor and aerosol mass spectrometer. Atmospheric Measurement Techniques, 2011, 4, 1677-1688.	3.1	13
123	Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis. Atmospheric Chemistry and Physics, 2012, 12, 8297-8321.	4.9	11
124	Evaporation of sulfate aerosols at low relative humidity. Atmospheric Chemistry and Physics, 2017, 17, 8923-8938.	4.9	11
125	Automated alternating sampling of PM10 and PM2.5 with an online XRF spectrometer. Atmospheric Environment: X, 2020, 5, 100065.	1.4	11
126	Photodegradation of α-Pinene Secondary Organic Aerosol Dominated by Moderately Oxidized Molecules. Environmental Science & Technology, 2021, 55, 6936-6943.	10.0	11

#	Article	IF	CITATIONS
127	Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry. Atmospheric Chemistry and Physics, 2022, 22, 7739-7761.	4.9	11
128	Characterization of iceâ€nucleating bacteria using onâ€line electron impact ionization aerosol mass spectrometry. Journal of Mass Spectrometry, 2015, 50, 662-671.	1.6	10
129	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	2.4	10
130	Constraining the response factors of an extractive electrospray ionization mass spectrometer for near-molecular aerosol speciation. Atmospheric Measurement Techniques, 2021, 14, 6955-6972.	3.1	10
131	Characteristics of wintertime VOCs in urban Beijing: Composition and source apportionment. Atmospheric Environment: X, 2021, 9, 100100.	1.4	9
132	Improved chloride quantification in quadrupole aerosol chemical speciation monitors (Q-ACSMs). Atmospheric Measurement Techniques, 2020, 13, 5293-5301.	3.1	9
133	Insights into organic-aerosol sources via a novel laser-desorption/ionization mass spectrometry technique applied to one year of PM ₁₀ samples from nine sites in central Europe. Atmospheric Chemistry and Physics, 2018, 18, 2155-2174.	4.9	7
134	Detection of trace metals in biogas using extractive electrospray ionization high-resolution mass spectrometry. Renewable Energy, 2021, 169, 780-787.	8.9	7
135	Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization. Atmospheric Measurement Techniques, 2021, 14, 5913-5923.	3.1	7
136	Similarities in STXM-NEXAFS Spectra of Atmospheric Particles and Secondary Organic Aerosol Generated from Glyoxal, α-Pinene, Isoprene, 1,2,4-Trimethylbenzene, and d-Limonene. Aerosol Science and Technology, 2013, 47, 543-555.	3.1	6
137	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Aircraft Turbine Engines. Environmental Science & Technology, 2017, 51, 3621-3629.	10.0	6
138	The Distant Double Bond Determines the Fate of the Carboxylic Group in the Dissociative Photoionization of Oleic Acid. ChemPhysChem, 2017, 18, 3595-3604.	2.1	6
139	Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in Măgurele, Romania. Atmosphere, 2020, 11, 385.	2.3	6
140	Chakrabarty <i>etÂal.</i> Reply:. Physical Review Letters, 2010, 104, .	7.8	4
141	Source identification and characterization of organic nitrogen in atmospheric aerosols at a suburban site in China. Science of the Total Environment, 2022, 818, 151800.	8.0	3
142	Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and		1