Evelyn Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266596/publications.pdf

Version: 2024-02-01

28	949	12	29
papers	citations	h-index	g-index
30	30	30	1565
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	8.7	469
2	Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (<scp>EBVs</scp>) for genetic composition. Biological Reviews, 2022, 97, 1511-1538.	10.4	73
3	Opportunities and challenges of macrogenetic studies. Nature Reviews Genetics, 2021, 22, 791-807.	16.3	55
4	Applying Behavioral-Ecological Theory to Plant Defense: Light-Dependent Movement in Mimosa pudica Suggests a Trade-Off between Predation Risk and Energetic Reward. American Naturalist, 2011, 177, 377-381.	2.1	38
5	Ancient and historical DNA in conservation policy. Trends in Ecology and Evolution, 2022, 37, 420-429.	8.7	31
6	Population genomics through time provides insights into the consequences of decline and rapid demographic recovery through headâ€starting in a Galapagos giant tortoise. Evolutionary Applications, 2018, 11, 1811-1821.	3.1	29
7	Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecology Letters, 2021, 24, 1282-1284.	6.4	27
8	Reply to Garner et al Trends in Ecology and Evolution, 2016, 31, 83-84.	8.7	24
9	Genome-Wide Assessment of Diversity and Divergence Among Extant Galapagos Giant Tortoise Species. Journal of Heredity, 2018, 109, 611-619.	2.4	22
10	Genetics of a head-start program to guide conservation of an endangered Galápagos tortoise (Chelonoidis ephippium). Conservation Genetics, 2015, 16, 823-832.	1.5	18
11	I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation. PeerJ, 2016, 4, e2350.	2.0	17
12	When the shoe doesn't fit: applying conservation unit concepts to western painted turtles at their northern periphery. Conservation Genetics, 2014, 15, 261-274.	1.5	16
13	Paleogenomics illuminates the evolutionary history of the extinct Holocene "horned―crocodile of Madagascar, Voay robustus. Communications Biology, 2021, 4, 505.	4.4	16
14	Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 1262-1275.	1.4	14
15	Temporal Mitogenomics of the Galapagos Giant Tortoise from Pinz \tilde{A}^3 n Reveals Potential Biases in Population Genetic Inference. Journal of Heredity, 2018, 109, 631-640.	2.4	12
16	Seeing the whole picture: What molecular ecology is gaining from whole genomes. Molecular Ecology, 2021, 30, 5917-5922.	3.9	12
17	Canadian polar bear population structure using genomeâ€wide markers. Ecology and Evolution, 2020, 10, 3706-3714.	1.9	11
18	Genetic Assessment of Taxonomic Uncertainty in Painted Turtles. Journal of Herpetology, 2015, 49, 314-324.	0.5	10

#	Article	IF	CITATIONS
19	Genetic evidence for multiple paternity in the critically endangered Cuban crocodile (Crocodylus) Tj ETQq1 1 0.78	34314 rgBT	GOverlock
20	Genotypingâ€inâ€thousands by sequencing (GTâ€seq) of noninvasive faecal and degraded samples: A new panel to enable ongoing monitoring of Canadian polar bear populations. Molecular Ecology Resources, 2022, 22, 1906-1918.	4.8	9
21	Ex Situ Wildlife Conservation in the Age of Population Genomics. Population Genomics, 2018, , 473-492.	0.5	7
22	Demographic history and patterns of molecular evolution from whole genome sequencing in the radiation of Galapagos giant tortoises. Molecular Ecology, 2021, 30, 6325-6339.	3.9	7
23	A real-time PCR assay to accurately quantify polar bear DNA in fecal extracts. PeerJ, 2020, 8, e8884.	2.0	5
24	Time scale matters: genetic analysis does not support adaptationâ€byâ€time as the mechanism for adaptive seasonal declines in kokanee reproductive life span. Ecology and Evolution, 2014, 4, 3714-3722.	1.9	4
25	Founded: Genetic Reconstruction of Lineage Diversity and Kinship InformsEx situConservation of Cuban Amazon Parrots (Amazona leucocephala). Journal of Heredity, 2015, 106, 573-579.	2.4	4
26	A new lineage of Galapagos giant tortoises identified from museum samples. Heredity, 2022, 128, 261-270.	2.6	3
27	The Galapagos giant tortoise Chelonoidis phantasticus is not extinct. Communications Biology, 2022, 5, .	4.4	3
28	Genotyping on the ark: A synthesis of genetic resources available for species in zoos. Zoo Biology, 2020, 39, 257-262.	1.2	2