Ke Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3265017/publications.pdf

Version: 2024-02-01

71102 53230 8,921 132 41 85 citations h-index g-index papers 142 142 142 18912 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Mapping the Genetic Architecture of Gene Expression in Human Liver. PLoS Biology, 2008, 6, e107.	5 . 6	872
2	Opportunities and challenges for transcriptome-wide association studies. Nature Genetics, 2019, 51, 592-599.	21.4	592
3	Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nature Genetics, 2019, 51, 804-814.	21.4	402
4	Particulate Matter Exposure and Stress Hormone Levels. Circulation, 2017, 136, 618-627.	1.6	364
5	New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics, 2019, 51, 481-493.	21.4	350
6	Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respiratory Medicine, the, 2015, 3, 769-781.	10.7	346
7	A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nature Neuroscience, 2017, 20, 1052-1061.	14.8	330
8	Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity. Diabetes, 2014, 63, 2158-2171.	0.6	297
9	Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma. PLoS Genetics, 2012, 8, e1003029.	3 . 5	261
10	Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nature Genetics, 2017, 49, 416-425.	21.4	257
11	Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science, 2016, 353, 827-830.	12.6	241
12	Massive parallel sequencing uncovers actionable FGFR2–PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nature Communications, 2015, 6, 6087.	12.8	240
13	Meta-analysis of 65,734 Individuals Identifies TSPAN15 and SLC44A2 as Two Susceptibility Loci for Venous Thromboembolism. American Journal of Human Genetics, 2015, 96, 532-542.	6.2	222
14	A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nature Genetics, 2017, 49, 1437-1449.	21.4	199
15	Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nature Communications, 2015, 6, 6304.	12.8	192
16	Identification of <i>TMPRSS2</i> as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza. Journal of Infectious Diseases, 2015, 212, 1214-1221.	4.0	170
17	Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma. Journal of Hepatology, 2017, 67, 1222-1231.	3.7	121
18	Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity. Journal of Hepatology, 2017, 66, 952-961.	3.7	120

#	Article	IF	Citations
19	Gut microbiota density influences host physiology and is shaped by host and microbial factors. ELife, 2019, 8, .	6.0	118
20	Integration of Alzheimer's disease genetics and myeloid genomics identifies disease risk regulatory elements and genes. Nature Communications, 2021, 12, 1610.	12.8	118
21	Unique Genomic Profile of Fibrolamellar Hepatocellular Carcinoma. Gastroenterology, 2015, 148, 806-818.e10.	1.3	109
22	Intestinal Inflammation Modulates the Expression of ACE2 and TMPRSS2 and Potentially Overlaps With the Pathogenesis of SARS-CoV-2–related Disease. Gastroenterology, 2021, 160, 287-301.e20.	1.3	98
23	A large lung gene expression study identifying fibulin-5 as a novel player in tissue repair in COPD. Thorax, 2015, 70, 21-32.	5.6	89
24	Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Communications Biology, 2021, 4, 700.	4.4	77
25	Development and clinical application of an integrative genomic approach to personalized cancer therapy. Genome Medicine, 2016, 8, 62.	8.2	71
26	Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy. Journal of the National Cancer Institute, 2020, 112, 179-190.	6.3	71
27	Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. Nature Communications, 2016, 7, 10561.	12.8	69
28	Cadmium-Associated Differential Methylation throughout the Placental Genome: Epigenome-Wide Association Study of Two U.S. Birth Cohorts. Environmental Health Perspectives, 2018, 126, 017010.	6.0	69
29	Molecular mechanisms underlying variations in lung function: a systems genetics analysis. Lancet Respiratory Medicine,the, 2015, 3, 782-795.	10.7	66
30	Shared genetic etiology underlying Alzheimer's disease and type 2 diabetes. Molecular Aspects of Medicine, 2015, 43-44, 66-76.	6.4	63
31	The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids. Scientific Reports, 2019, 9, 3546.	3.3	61
32	Age-Stratified Risk of Unexpected Uterine Sarcoma Following Surgery for Presumed Benign Leiomyoma. Oncologist, 2015, 20, 433-439.	3.7	59
33	Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. Human Molecular Genetics, 2017, 26, 3432-3441.	2.9	58
34	Integrative metabolomicsâ€genomics approach reveals key metabolic pathways and regulators of Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 1260-1278.	0.8	57
35	Air pollution and chronic obstructive pulmonary disease. Chronic Diseases and Translational Medicine, 2020, 6, 260-269.	1.2	56
36	Prenatal exposure to benzophenones, parabens and triclosan and neurocognitive development at 2†years. Environment International, 2019, 126, 413-421.	10.0	55

#	Article	IF	CITATIONS
37	Whole-transcriptome analysis delineates the human placenta gene network and its associations with fetal growth. BMC Genomics, 2017, 18, 520.	2.8	53
38	Heterogeneity in gut microbiota drive polyphenol metabolism that influences \hat{l}_{\pm} -synuclein misfolding and toxicity. Journal of Nutritional Biochemistry, 2019, 64, 170-181.	4.2	52
39	Epigenome-wide association study links site-specific DNA methylation changes with cow's milk allergy. Journal of Allergy and Clinical Immunology, 2016, 138, 908-911.e9.	2.9	51
40	A mechanistic framework for cardiometabolic and coronary artery diseases., 2022, 1, 85-100.		51
41	Common genes underlying asthma and COPD? Genome-wide analysis on the Dutch hypothesis. European Respiratory Journal, 2014, 44, 860-872.	6.7	49
42	Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration. Nature Communications, 2019, 10, 3927.	12.8	49
43	Airway microbiome is associated with respiratory functions and responses to ambient particulate matter exposure. Ecotoxicology and Environmental Safety, 2019, 167, 269-277.	6.0	48
44	Molecularly defined unfolded protein response subclasses have distinct correlations with fatty liver disease in zebrafish. DMM Disease Models and Mechanisms, 2014, 7, 823-835.	2.4	47
45	Intrauterine multi-metal exposure is associated with reduced fetal growth through modulation of the placental gene network. Environment International, 2018, 120, 373-381.	10.0	46
46	Surfactant protein D is a causal risk factor for COPD: results of Mendelian randomisation. European Respiratory Journal, 2017, 50, 1700657.	6.7	45
47	Functional variants regulating LGALS1 (Galectin 1) expression affect human susceptibility to influenza A(H7N9). Scientific Reports, 2015, 5, 8517.	3.3	43
48	Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Chinese Medical Journal, 2017, 130, 2107-2111.	2.3	43
49	Maternal exposure to selenium and cadmium, fetal growth, and placental expression of steroidogenic and apoptotic genes. Environmental Research, 2017, 158, 233-244.	7.5	41
50	Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nature Communications, 2021, 12, 5095.	12.8	41
51	High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors. PLoS Genetics, 2017, 13, e1006565.	3.5	41
52	Blood and Intestine eQTLs from an Anti-TNF-Resistant Crohn's Disease Cohort Inform IBD Genetic Association Loci. Clinical and Translational Gastroenterology, 2016, 7, e177.	2.5	40
53	SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data. PLoS Computational Biology, 2015, 11, e1004618.	3.2	40
54	Genome-wide DNA methylation associations with spontaneous preterm birth in US blacks: findings in maternal and cord blood samples. Epigenetics, 2018, 13, 163-172.	2.7	38

#	Article	IF	CITATIONS
55	Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity. PLoS Genetics, 2018, 14, e1007799.	3.5	38
56	Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Human Molecular Genetics, 2018, 27, 1819-1829.	2.9	37
57	A Systems Approach Identifies Networks and Genes Linking Sleep and Stress: Implications for Neuropsychiatric Disorders. Cell Reports, 2015, 11, 835-848.	6.4	36
58	Multi-omics highlights ABO plasma protein as a causal risk factor for COVID-19. Human Genetics, 2021, 140, 969-979.	3.8	36
59	An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nature Communications, 2021, 12, 547.	12.8	35
60	Genome-wide interaction study of gene-by-occupational exposure and effects on FEV1 levels. Journal of Allergy and Clinical Immunology, 2015, 136, 1664-1672.e14.	2.9	34
61	Recipient APOL1 risk alleles associate with death-censored renal allograft survival and rejection episodes. Journal of Clinical Investigation, 2021, 131, .	8.2	33
62	Genome-wide approach identifies a novel gene-maternal pre-pregnancy BMI interaction on preterm birth. Nature Communications, 2017, 8, 15608.	12.8	31
63	Collagenous Colitis Is Associated With HLA Signature and Shares Genetic Risks With Other Immune-Mediated Diseases. Gastroenterology, 2020, 159, 549-561.e8.	1.3	31
64	Genetic regulation of gene expression in the lung identifies <i>CST3 </i> and <i>CD22 </i> as potential causal genes for airflow obstruction. Thorax, 2014, 69, 997-1004.	5.6	30
65	Airway Epithelial Expression Quantitative Trait Loci Reveal Genes Underlying Asthma and Other Airway Diseases. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 177-187.	2.9	28
66	Integrative Genomics of Emphysema-Associated Genes Reveals Potential Disease Biomarkers. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 411-418.	2.9	28
67	Chronic Exposure to PM _{2.5} Nitrate, Sulfate, and Ammonium Causes Respiratory System Impairments in Mice. Environmental Science & Environment	10.0	28
68	Responsiveness to Ipratropium Bromide in Male and Female Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease. EBioMedicine, 2017, 19, 139-145.	6.1	27
69	A plasma proteogenomic signature for fibromuscular dysplasia. Cardiovascular Research, 2020, 116, 63-77.	3.8	27
70	A loss of function variant in CASP7 protects against Alzheimer's disease in homozygous APOE Îμ4 allele carriers. BMC Genomics, 2016, 17, 445.	2.8	26
71	Integrative Analysis of the Inflammatory Bowel Disease Serum Metabolome Improves Our Understanding of Genetic Etiology and Points to Novel Putative Therapeutic Targets. Gastroenterology, 2022, 162, 828-843.e11.	1.3	26
72	Genome-wide non-HLA donor-recipient genetic differences influence renal allograft survival via early allograft fibrosis. Kidney International, 2020, 98, 758-768.	5.2	25

#	Article	IF	Citations
73	Placental gene networks at the interface between maternal PM2.5 exposure early in gestation and reduced infant birthweight. Environmental Research, 2021, 199, 111342.	7.5	24
74	Polymorphisms Associated with Expression of BPIFA1/BPIFB1 and Lung Disease Severity in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 607-614.	2.9	23
75	Role of <scp>BAFF</scp> in pulmonary autoantibody responses induced by chronic cigarette smoke exposure in mice. Physiological Reports, 2016, 4, e13057.	1.7	23
76	Maternal circadian disruption is associated with variation in placental DNA methylation. PLoS ONE, 2019, 14, e0215745.	2.5	22
77	Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Research in Cardiology, 2022, 117, 6.	5.9	22
78	Identification and Bioinformatic Analysis of Circular RNA Expression in Peripheral Blood Mononuclear Cells from Patients with Chronic Obstructive Pulmonary Disease. International Journal of COPD, 2020, Volume 15, 1391-1401.	2.3	21
79	Global analysis of A-to-I RNA editing reveals association with common disease variants. PeerJ, 2018, 6, e4466.	2.0	21
80	Association of adverse birth outcomes with prenatal uranium exposure: A population-based cohort study. Environment International, 2020, 135, 105391.	10.0	20
81	Prenatal exposure to ambient air multi-pollutants significantly impairs intrauterine fetal development trajectory. Ecotoxicology and Environmental Safety, 2020, 201, 110726.	6.0	20
82	Selenium-associated DNA methylation modifications in placenta and neurobehavioral development of newborns: An epigenome-wide study of two U.S. birth cohorts. Environment International, 2020, 137, 105508.	10.0	19
83	Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Research, 2018, 3, 4.	1.8	19
84	High-Throughput Identification of the Plasma Proteomic Signature of Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2019, 13, 462-471.	1.3	18
85	Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28422-28432.	7.1	18
86	Placental IncRNA expression associated with placental cadmium concentrations and birth weight. Environmental Epigenetics, 2020, 6, dvaa003.	1.8	17
87	EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data. Nucleic Acids Research, 2019, 47, e39-e39.	14.5	15
88	In-hospital use of ACE inhibitors/angiotensin receptor blockers associates with COVID-19 outcomes in African American patients. Journal of Clinical Investigation, 2021, 131, .	8.2	15
89	The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD. European Respiratory Journal, 2019, 54, 1900521.	6.7	14
90	Nonsyndromic craniosynostosis: novel coding variants. Pediatric Research, 2019, 85, 463-468.	2.3	14

#	Article	IF	Citations
91	Sexâ€specific peripheral and central responses to stressâ€induced depression and treatment in a mouse model. Journal of Neuroscience Research, 2020, 98, 2541-2553.	2.9	14
92	Molecular Characterization of Limited Ulcerative Colitis Reveals Novel Biology and Predictors of Disease Extension. Gastroenterology, 2021, 161, 1953-1968.e15.	1.3	14
93	Placental MAOA expression mediates prenatal stress effects on temperament in 12â€monthâ€olds. Infant and Child Development, 2018, 27, e2094.	1.5	13
94	Placental multi-omics integration identifies candidate functional genes for birthweight. Nature Communications, 2022, 13, 2384.	12.8	13
95	Susceptibility genes for lung diseases in the major histocompatibility complex revealed by lung expression quantitative trait loci analysis. European Respiratory Journal, 2016, 48, 573-576.	6.7	12
96	Placental microRNA expression associates with birthweight through control of adipokines: results from two independent cohorts. Epigenetics, 2021, 16, 770-782.	2.7	12
97	Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution. Environmental Pollution, 2021, 280, 116951.	7.5	12
98	ACE inhibition and cardiometabolic risk factors, lung <i>ACE2</i> and <i>TMPRSS2</i> gene expression, and plasma ACE2 levels: a Mendelian randomization study. Royal Society Open Science, 2020, 7, 200958.	2.4	12
99	GIGSEA: genotype imputed gene set enrichment analysis using GWAS summary level data. Bioinformatics, 2019, 35, 160-163.	4.1	11
100	Copper associates with differential methylation in placentae from two US birth cohorts. Epigenetics, 2020, 15, 215-230.	2.7	11
101	Genetic architecture of cardiometabolic risks in people living with HIV. BMC Medicine, 2020, 18, 288.	5.5	11
102	Integrative Prioritization of Causal Genes for Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003365.	3.6	11
103	Precision Medicine Approaches to Vascular Disease. Journal of the American College of Cardiology, 2021, 77, 2531-2550.	2.8	10
104	Seasonally variant gene expression in fullâ€ŧerm human placenta. FASEB Journal, 2020, 34, 10431-10442.	0.5	9
105	Multiple independent mechanisms link gene polymorphisms in the region of ZEB2 with risk of coronary artery disease. Atherosclerosis, 2020, 311, 20-29.	0.8	9
106	Gene expression network analysis provides potential targets against SARS-CoV-2. Scientific Reports, 2020, 10, 21863.	3.3	9
107	Genetic Pleiotropy between Nicotine Dependence and Respiratory Outcomes. Scientific Reports, 2017, 7, 16907.	3.3	8
108	Meta-eQTL: a tool set for flexible eQTL meta-analysis. BMC Bioinformatics, 2014, 15, 392.	2.6	7

#	Article	lF	CITATIONS
109	Potential roles of imprinted genes in the teratogenic effects of alcohol on the placenta, somatic growth, and the developing brain. Experimental Neurology, 2022, 347, 113919.	4.1	7
110	Intestinal Dysbiosis in Young Cystic Fibrosis Rabbits. Journal of Personalized Medicine, 2021, 11, 132.	2.5	6
111	Ambient Air Pollutants and Traffic Factors Were Associated with Blood and Urine Biomarkers and Asthma Risk. Environmental Science & Environmental Scie	10.0	6
112	Using SAAS-CNV to Detect and Characterize Somatic Copy Number Alterations in Cancer Genomes from Next Generation Sequencing and SNP Array Data. Methods in Molecular Biology, 2018, 1833, 29-47.	0.9	5
113	Autonomic Nervous System Dysfunctions as a Basis for a Predictive Model of Risk ofÂNeurological Disorders in Subjects withÂPrior History of Traumatic Brain Injury: Implications in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 56, 305-315.	2.6	4
114	APOL1 G2 risk alleleâ€"clarifying nomenclature. Kidney International, 2017, 92, 518-519.	5.2	4
115	A Comprehensive Database and Analysis Framework To Incorporate Multiscale Data Types and Enable Integrated Analysis of Bioactive Polyphenols. Molecular Pharmaceutics, 2018, 15, 840-850.	4.6	4
116	Bio3Air, an integrative system for monitoring individual-level air pollutant exposure with high time and spatial resolution. Ecotoxicology and Environmental Safety, 2019, 169, 756-763.	6.0	3
117	Meta-analysis of sample-level dbGaP data reveals novel shared genetic link between body height and Crohn's disease. Human Genetics, 2021, 140, 865-877.	3.8	3
118	Variants associated with HHIP expression have sex-differential effects on lung function. Wellcome Open Research, 2020, 5, 111.	1.8	3
119	Selenium-associated differentially expressed microRNAs and their targeted mRNAs across the placental genome in two U.S. birth cohorts. Epigenetics, 2022, 17, 1234-1245.	2.7	3
120	Administration of High-Dose Methylprednisolone Worsens Bone Loss after Acute Spinal Cord Injury in Rats. Neurotrauma Reports, 2021, 2, 592-602.	1.4	3
121	Polygenic risk score for alcohol drinking behavior improves prediction of inflammatory bowel disease risk. Human Molecular Genetics, 2021, 30, 514-523.	2.9	2
122	The HDAC9-associated risk locus promotes coronary artery disease by governing TWIST1. PLoS Genetics, 2022, 18, e1010261.	3.5	2
123	Peripheral and cognitive benefits of physical exercise in a mouse model of midlife metabolic syndrome. Scientific Reports, 2022, 12, 3260.	3.3	1
124	F1-02-03: MULTISCALE COMPUTATIONAL APPROACH ILLUMINATING NOVEL COMMON PATHWAYS BETWEEN DIABETES AND AD. , 2014, 10, P126-P126.		0
125	A Dynamic Pooling Approach to Extract Complete Allele Signal Information in Somatic Copy Number Alternations Detection. , 2018 , , .		O
126	P4â€492: GENOMEâ€WIDE INTEGRATION OF ALZHEIMER'S DISEASE GENETICS AND MYELOID CELL GENOMICS IDENTIFIES NOVEL RISK GENES EXPRESSED IN MICROGLIA. Alzheimer's and Dementia, 2019, 15, P1502.	0.8	0

#	ARTICLE	IF	CITATION
127	Genetic studies of Alzheimer's disease risk implicate clearance of lipid rich debris in myeloid cells. Alzheimer's and Dementia, 2020, 16, e040601.	0.8	0
128	Integration of Alzheimer's disease genetics and myeloid genomics reveals novel disease risk mechanisms. Alzheimer's and Dementia, 2020, 16, e043897.	0.8	0
129	Abstract 386: Identification of Genetic Regulatory Networks for Insulin Resistance in Multiple Populations of Diverse Ethnicities. Circulation Research, 2017, 121, .	4.5	O
130	Integrated analysis of mRNA and long noncoding RNA profiles in peripheral blood mononuclear cells of patients with bronchial asthma. BMC Pulmonary Medicine, 2022, 22, 174.	2.0	0
131	Maternal Pre-pregnancy BMI Associates With Sex-Specific Placental microRNA Patterns. Current Developments in Nutrition, 2022, 6, 671.	0.3	O
132	Variation in placental microRNA expression associates with maternal family history of cardiovascular disease. Journal of Developmental Origins of Health and Disease, 2023, 14, 132-139.	1.4	0