
Igor Kagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3264336/publications.pdf Version: 2024-02-01

Article	IF	CITATIONS
Toward next-generation primate neuroscience: A collaboration-based strategic plan for integrative neuroimaging. Neuron, 2022, 110, 16-20.	8.1	22
Combining brain perturbation and neuroimaging in non-human primates. Neurolmage, 2021, 235, 118017.	4.2	50
Effective connectivity and spatial selectivity-dependent fMRI changes elicited by microstimulation of pulvinar and LIP. NeuroImage, 2021, 240, 118283.	4.2	11
Emergence and suppression of cooperation by action visibility in transparent games. PLoS Computational Biology, 2020, 16, e1007588.	3.2	7
Eye position signals in the dorsal pulvinar during fixation and goal-directed saccades. Journal of Neurophysiology, 2020, 123, 367-391.	1.8	12
Aberrant functional connectivity of resting state networks related to misperceptions and intra-individual variability in Parkinsonâ€r̃s disease. NeuroImage: Clinical, 2020, 25, 102076.	2.7	7
Macaque Gaze Responses to the Primatar: A Virtual Macaque Head for Social Cognition Research. Frontiers in Psychology, 2020, 11, 1645.	2.1	9
Accelerating the Evolution of Nonhuman Primate Neuroimaging. Neuron, 2020, 105, 600-603.	8.1	92
Judgments of effort exerted by others are influenced by received rewards. Scientific Reports, 2020, 10, 1868.	3.3	7
Evolutionary Successful Strategies in a Transparent iterated Prisoner's Dilemma. Lecture Notes in Computer Science, 2019, , 204-219.	1.3	1
Reach and grasp deficits following damage to the dorsal pulvinar. Cortex, 2018, 99, 135-149.	2.4	22
Using imaging photoplethysmography for heart rate estimation in non-human primates. PLoS ONE, 2018, 13, e0202581.	2.5	21
Implicit reward associations impact face processing: Time-resolved evidence from event-related brain potentials and pupil dilations. NeuroImage, 2018, 179, 557-569.	4.2	32
Post-decision wagering after perceptual judgments reveals bi-directional certainty readouts. Cognition, 2018, 176, 40-52.	2.2	20
Lateral intraparietal area (LIP) is largely effector-specific in free-choice decisions. Scientific Reports, 2018, 8, 8611.	3.3	28
Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner. Journal of Neuroscience, 2017, 37, 2234-2257.	3.6	44
Active Vision: Dynamic Reformatting of Visual Information by the Saccade-Drift Cycle. Current Biology, 2017, 27, R341-R344.	3.9	4
Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions. Journal of Neuroscience, 2015, 35, 11719-11728.	3.6	39
	Toward next-generation primate neuroscience: A collaboration-based strategic plan for integrative neuroimaging: Neuron, 2022, 110, 15-20. Combining brain perturbation and neuroimaging in non-human primates. NeuroImage, 2021, 235, 118017. Effective connectivity and spatial selectivity-dependent fMRI changes elicited by microstimulation of publinar and UP. NeuroImage, 2021, 240, 118283. Emergence and suppression of cooperation by action visibility in transparent games. PLoS Computational Biology, 2020, 16, e1007588. Eye position signals in the dorsal publinar during fixation and goal-directed saccades. Journal of Neurophysiology, 2020, 123, 367-391. Aberrant functional connectivity of resting state networks related to misperceptions and intra-individual variability in Parkinson&F's disease. NeuroImage: Clinical, 2020, 25, 102076. Macague Caze Responses to the Primatar: A Virtual Macague Head for Social Cognition Research. Frontiers in Psychology, 2020, 11, 1645. Accelerating the Evolution of Nonhuman Primate Neuroimaging. Neuron, 2020, 105, 600-603. Judgments of effort exerted by others are influenced by received rewards. Scientific Reports, 2020, 10, 1859. Reach and grasp deficits following damage to the dorsal publinar. Cortex, 2018, 99, 135-149. Using imaging photoplethysmography for heart rate estimation in non-human primates. PLoS ONE, 2018, 13, e0202531. Implements of allotos. NeuroImage, 2018, 179, 557-569. Post-decision wagering after perceptual judgments reveals bi-directional certainty readouts. Cognition, 2018, 176, 40-52. Lateral Intrapa	Toward next-generation primate neuroscience: A collaboration based strategic plan for integrative neuroimaging. Neuron, 2022, 110, 16-20. 8,1 Combining brain perturbation and neuroimaging in non-human primates. Neuroimage, 2021, 235, 118017. 4.2 Effective connectivity and spatial selectivity-dependent fMRI changes elicited by microstimulation of publicar and LP. Neuroimage, 2021, 240, 118283. 4.2 Emergence and suppression of cooperation by action visibility in transparent games. PLoS 3.2 Computational Biology, 2020, 123, 367-391. 1.8 Aberrant functional connectivity of resting state networks related to misperceptions and intra-individual variability in Parkinson&C 5 disease. NeuroImage: Clinical, 2020, 25, 102076. 2.7 Macaging Gaze Response to the Primatur: A Virtual Macague Head for Social Cognition Research. 2.1 Proteins of effort exerted by others are influenced by received rewards. Scientific Reports, 2020, 10, 1363. 3.3 Evolutionary Successful Strategies in a Transparent iterated Prisonerãe ^{res} Dilemma. Lecture Notes in Computer Science, 2019, 204-219. 2.4 Using inaging photoplethysmography for heart rate estimation in non-human primates. PLoS ONE, 2018, 13, e0202581. 2.5 Dial dations. Neuroimage; 2018, 179, 557-569. 4.2 Post decision wagering after perceptual Judgments reveals bi-directional certainty readouts. 2.2 Lising inaging photoplethysmography for hea

IGOR KAGAN

#	Article	IF	CITATIONS
19	Trunk rotation affects temporal order judgments with direct saccades: Influence of handedness. Neuropsychologia, 2015, 79, 123-137.	1.6	2
20	Primate area V1. NeuroReport, 2014, 25, 1109-1115.	1.2	13
21	Active Vision: Microsaccades Direct the Eye to Where It Matters Most. Current Biology, 2013, 23, R712-R714.	3.9	19
22	Effects of Pulvinar Inactivation on Spatial Decision-making between Equal and Asymmetric Reward Options. Journal of Cognitive Neuroscience, 2013, 25, 1270-1283.	2.3	45
23	Functional imaging reveals rapid reorganization of cortical activity after parietal inactivation in monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8274-8279.	7.1	77
24	Active Vision: Fixational Eye Movements Help Seeing Space in Time. Current Biology, 2012, 22, R186-R188.	3.9	11
25	Human Posterior Parietal Cortex Plans Where to Reach and What to Avoid. Journal of Neuroscience, 2010, 30, 11715-11725.	3.6	62
26	Space representation for eye movements is more contralateral in monkeys than in humans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7933-7938.	7.1	90
27	Motor Preparatory Activity in Posterior Parietal Cortex is Modulated by Subjective Absolute Value. PLoS Biology, 2010, 8, e1000444.	5.6	22
28	Saccades and drifts differentially modulate neuronal activity in V1: Effects of retinal image motion, position, and extraretinal influences. Journal of Vision, 2008, 8, 19-19.	0.3	110
29	Orientation and Direction Selectivity of Neurons in V1 of Alert Monkeys: Functional Relationships and Laminar Distributions. Cerebral Cortex, 2005, 15, 1207-1221.	2.9	141
30	How the mesencephalic locomotor region recruits hindbrain neurons. Progress in Brain Research, 2004, 143, 219-230.	1.4	7
31	Modeling the responses of V1 complex cells to natural temporal inputs. Journal of Vision, 2004, 4, 278-278.	0.3	2
32	Lack of short-term adaptation in V1 cells of the alert monkey. Journal of Vision, 2004, 4, 223-223.	0.3	0
33	Spatial Organization of Receptive Fields of V1 Neurons of Alert Monkeys: Comparison With Responses to Gratings. Journal of Neurophysiology, 2002, 88, 2557-2574.	1.8	75
34	Selective activation of visual cortex neurons by fixational eye movements: Implications for neural coding. Visual Neuroscience, 2001, 18, 259-277.	1.0	121
35	Chapter 25 Behavior of Hindbrain Neurons During the Transition from Rest to Evoked Locomotion in a Newt. Progress in Brain Research, 1999, 123, 285-294.	1.4	11