
Takeshi Nishimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3263788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5430-5435.	7.1	304
2	<i>NAL1</i> allele from a rice landrace greatly increases yield in modern <i>indica</i> cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20431-20436.	7.1	249
3	NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Molecular Genetics and Genomics, 2008, 279, 499-507.	2.1	207
4	Yucasin is a potent inhibitor of <scp>YUCCA</scp> , a key enzyme in auxin biosynthesis. Plant Journal, 2014, 77, 352-366.	5.7	167
5	Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16128-16132.	7.1	145
6	The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots. Plant Cell, 2017, 29, 1984-1999.	6.6	143
7	The rice <scp><i>FISH BONE</i></scp> gene encodes a tryptophan aminotransferase, which affects pleiotropic auxinâ€related processes. Plant Journal, 2014, 78, 927-936.	5.7	100
8	RSOsPR10 Expression in Response to Environmental Stresses is Regulated Antagonistically by Jasmonate/Ethylene and Salicylic Acid Signaling Pathways in Rice Roots. Plant and Cell Physiology, 2011, 52, 1686-1696.	3.1	95
9	A rice <i>tryptophan deficient dwarf</i> mutant, <i>tdd1,</i> contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Plant Journal, 2009, 60, 227-241.	5.7	88
10	Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nature Communications, 2020, 11, 76.	12.8	80
11	Gravity sensing and signal conversion in plant gravitropism. Journal of Experimental Botany, 2019, 70, 3495-3506.	4.8	79
12	Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11557-11562.	7.1	75
13	Alkoxy-auxins Are Selective Inhibitors of Auxin Transport Mediated by PIN, ABCB, and AUX1 Transporters. Journal of Biological Chemistry, 2011, 286, 2354-2364.	3.4	52
14	Differential Downward Stream of Auxin Synthesized at the Tip Has a Key Role in Gravitropic Curvature via TIR1/AFBs-Mediated Auxin Signaling Pathways. Plant and Cell Physiology, 2009, 50, 1874-1885.	3.1	48
15	Yucasin DF, a potent and persistent inhibitor of auxin biosynthesis in plants. Scientific Reports, 2017, 7, 13992.	3.3	44
16	Bridging the gap between amyloplasts and directional auxin transport in plant gravitropism. Current Opinion in Plant Biology, 2019, 52, 54-60.	7.1	41
17	NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles. Journal of Experimental Botany, 2011, 62, 3459-3466.	4.8	38
18	Vigorous synthesis of indole-3-acetic acid in the apical very tip leads to a constant basipetal flow of the hormone in maize coleoptiles. Plant Science, 2005, 168, 467-473.	3.6	36

#	Article	IF	CITATIONS
19	Identification of IAA Transport Inhibitors Including Compounds Affecting Cellular PIN Trafficking by Two Chemical Screening Approaches Using Maize Coleoptile Systems. Plant and Cell Physiology, 2012, 53, 1671-1682.	3.1	34
20	Magnaporthe oryzae Glycine-Rich Secretion Protein, Rbf1 Critically Participates in Pathogenicity through the Focal Formation of the Biotrophic Interfacial Complex. PLoS Pathogens, 2016, 12, e1005921.	4.7	33
21	Red light causes a reduction in IAA levels at the apical tip by inhibiting de novo biosynthesis from tryptophan in maize coleoptiles. Planta, 2006, 224, 1427-1435.	3.2	29
22	Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. Plant Signaling and Behavior, 2011, 6, 2013-2022.	2.4	25
23	Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nature Communications, 2022, 13, 7.	12.8	19
24	Molecular and cellular analysis of the biotrophic interaction between rice and Magnaporthe oryzae – Exploring situations in which the blast fungus controls the infection. Physiological and Molecular Plant Pathology, 2016, 95, 70-76.	2.5	11
25	Gravistimulation Changes the Accumulation Pattern of the CsPIN1 Auxin Efflux Facilitator in the Endodermis of the Transition Zone in Cucumber Seedlings Â. Plant Physiology, 2012, 158, 239-251.	4.8	10
26	Blue-light regulation of ZmPHOT1 and ZmPHOT2 gene expression and the possible involvement of Zmphot1 in phototropism in maize coleoptiles. Planta, 2014, 240, 251-261.	3.2	9
27	Expression of <i>RSOsPR10</i> in rice roots is antagonistically regulated by jasmonate/ethylene and salicylic acid via the activator OsERF87 and the repressor OsWRKY76, respectively. Plant Direct, 2018, 2, e00049.	1.9	9
28	Effects of anti-auxins on secondary aerenchyma formation in flooded soybean hypocotyls. Plant Production Science, 2016, 19, 154-160.	2.0	8
29	A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx inArabidopsis thaliana. Plant Signaling and Behavior, 2014, 9, e29077.	2.4	5
30	Auxin biosynthesis site and polar transport in maize coleoptiles. Plant Signaling and Behavior, 2010, 5, 573-575.	2.4	3
31	Immunolocalization of IAA Using an Anti-IAA-C-Antibody Raised Against Carboxyl-Linked IAA. Methods in Molecular Biology, 2019, 1924, 165-172.	0.9	2
32	Indole-3-Acetic Acid Biosynthesis and Gravitropic Response in Maize Coleoptiles. Uchu Seibutsu Kagaku, 2011, 25, 37-43.	0.3	0
33	Auxin Biosynthesis and Polar Auxin Transport During Tropisms in Maize Coleoptiles. Signaling and Communication in Plants, 2013, , 221-238.	0.7	О