
Bernd Wicklein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3263020/publications.pdf Version: 2024-02-01

REDND WICKLEIN

#	Article	IF	CITATIONS
1	Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology, 2015, 10, 277-283.	31.5	1,103
2	Fibrous clays based bionanocomposites. Progress in Polymer Science, 2013, 38, 1392-1414.	24.7	209
3	Nanotechnology Responses to COVIDâ€19. Advanced Healthcare Materials, 2020, 9, e2000979.	7.6	128
4	Tuning the Nanocellulose–Borate Interaction To Achieve Highly Flame Retardant Hybrid Materials. Chemistry of Materials, 2016, 28, 1985-1989.	6.7	103
5	Bio-organoclays Based on Phospholipids as Immobilization Hosts for Biological Species. Langmuir, 2010, 26, 5217-5225.	3.5	89
6	All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale, 2018, 10, 4085-4095.	5.6	87
7	Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydrate Polymers, 2018, 179, 252-261.	10.2	80
8	Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials. Journal of Materials Chemistry A, 2013, 1, 5469.	10.3	58
9	The Use of ATR-FTIR Spectroscopy for Quantification of Adsorbed Compounds. Journal of Spectroscopy, 2015, 2015, 1-8.	1.3	57
10	Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. International Journal of Biological Macromolecules, 2019, 126, 18-29.	7.5	54
11	Phospholipid–Sepiolite Biomimetic Interfaces for the Immobilization of Enzymes. ACS Applied Materials & Interfaces, 2011, 3, 4339-4348.	8.0	51
12	Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation. Journal of Colloid and Interface Science, 2016, 472, 44-51.	9.4	47
13	Functional biohybrid materials based on halloysite, sepiolite and cellulose nanofibers for health applications. Dalton Transactions, 2020, 49, 3830-3840.	3.3	45
14	Cellulose nanofibers as substrate for flexible and biodegradable moisture sensors. Composites Science and Technology, 2021, 208, 108738.	7.8	44
15	Multifunctional Porous Materials Through Ferrofluids. Advanced Materials, 2011, 23, 5224-5228.	21.0	42
16	Confined self-assembly of cellulose nanocrystals in a shrinking droplet. Soft Matter, 2015, 11, 5374-5380.	2.7	40
17	Omnidispersible poly(ionic liquid)-functionalized cellulose nanofibrils: surface grafting and polymer membrane reinforcement. Chemical Communications, 2014, 50, 12486-12489.	4.1	35
18	Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials, 2021, 417, 126068.	12.4	31

Bernd Wicklein

#	Article	IF	CITATIONS
19	Lipidâ€Based Bioâ€Nanohybrids for Functional Stabilisation of Influenza Vaccines. European Journal of Inorganic Chemistry, 2012, 2012, 5186-5191.	2.0	30
20	Biomimetic Architectures for the Impedimetric Discrimination of Influenza Virus Phenotypes. Advanced Functional Materials, 2013, 23, 254-262.	14.9	27
21	Dualâ€Fiber Approach toward Flexible Multifunctional Hybrid Materials. Advanced Functional Materials, 2018, 28, 1704274.	14.9	26
22	Hierarchically structured bioactive foams based on polyvinyl alcohol–sepiolite nanocomposites. Journal of Materials Chemistry B, 2013, 1, 2911.	5.8	25
23	Recent Advances on Fibrous Clay-Based Nanocomposites. Advances in Polymer Science, 2014, , 39-86.	0.8	25
24	Biorefinery of Lignocellulosic Biomass from an Elm Clone: Production of Fermentable Sugars and Ligninâ€Đerived Biochar for Energy and Environmental Applications. Energy Technology, 2019, 7, 277-287.	3.8	24
25	Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. International Journal of Biological Macromolecules, 2019, 140, 311-322.	7.5	23
26	Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices. Beilstein Journal of Nanotechnology, 2019, 10, 1303-1315.	2.8	19
27	CLAY-BASED BIOHYBRID MATERIALS FOR BIOMEDICAL AND PHARMACEUTICAL APPLICATIONS. Clays and Clay Minerals, 2019, 67, 44-58.	1.3	16
28	<i>In situ</i> generation of 3D graphene-like networks from cellulose nanofibres in sintered ceramics. Nanoscale, 2018, 10, 10488-10497.	5.6	13
29	Properties versus application requirements of solubilized lignins from an elm clone during different pre-treatments. International Journal of Biological Macromolecules, 2021, 181, 99-111.	7.5	13
30	Chemical, Thermal and Antioxidant Properties of Lignins Solubilized during Soda/AQ Pulping of Orange and Olive Tree Pruning Residues. Molecules, 2021, 26, 3819.	3.8	12
31	Shape-Conformable, Eco-Friendly Cellulose Aerogels as High-Performance Battery Separators. ACS Applied Energy Materials, 2021, 4, 763-774.	5.1	10
32	Advanced biohybrid materials based on nanoclays for biomedical applications. Proceedings of SPIE, 2012, , .	0.8	9
33	Nanostructured carbon–metal hybrid aerogels from bacterial cellulose. RSC Advances, 2017, 7, 42203-42210.	3.6	9
34	Production of Microfibrillated Cellulose from Fast-Growing Poplar and Olive Tree Pruning by Physical Pretreatment. Applied Sciences (Switzerland), 2021, 11, 6445.	2.5	9
35	Clay-lipid nanohybrids: towards influenza vaccines and beyond. Clay Minerals, 2016, 51, 529-538.	0.6	8
36	Functional Nanocomposites Based on Fibrous Clays. RSC Smart Materials, 2016, , 1-53.	0.1	6

Bernd Wicklein

#	Article	IF	CITATIONS
37	Research and Patents on Coronavirus and COVID-19: A Review. Recent Patents on Nanotechnology, 2020, 14, 328-350.	1.3	6
38	Modulation of Inorganic Matrices for Functional Nanoarchitectures Fabrication: The Simultaneous Effect of Moisture and Temperature in the Preparation of Metakaolin Based Geopolymers. Bulletin of the Chemical Society of Japan, 2018, 91, 1158-1167.	3.2	4
39	Freeze-casting of highly porous cellulose-nanofiber-reinforced γ˗Al2O3 monoliths. Open Ceramics, 2021, 5, 100069.	2.0	4
40	Populus alba L., an Autochthonous Species of Spain: A Source for Cellulose Nanofibers by Chemical Pretreatment. Polymers, 2022, 14, 68.	4.5	4
41	Triggering the aqueous interparticle association of γ‒Al2O3 hierarchical assemblies using divalent cations and cellulose nanofibers. Journal of the European Ceramic Society, 2021, 41, 590-598.	5.7	3
42	The Fascinating World of the Functional Hybrid andÂBiohybrid Materials. Advanced Functional Materials, 2018, 28, 1803407.	14.9	2
43	Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries. Beilstein Journal of Nanotechnology, 2021, 12, 995-1020.	2.8	1
44	Microstructure-property relationships in composites of 8YSZ ceramics and in situ graphitized nanocellulose. Journal of the European Ceramic Society, 2022, 42, 4594-4606.	5.7	1
45	Guest editors' preface. Journal of Materials Science, 2017, 52, 11121-11123.	3.7	0
46	Electrochromism: Dual-Fiber Approach toward Flexible Multifunctional Hybrid Materials (Adv. Funct.) Tj ETQq0 0	0 rgBT /0\ 14.9	verlock 10 Tf

47 THE MINERALOGY, GEOLOGY AND OCCURRENCES OF HALLOYSITE. , 2015, , 121-142.