
Chongxin Shan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3263017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Efficiency and Air-Stable Perovskite Quantum Dots Light-Emitting Diodes with an All-Inorganic Heterostructure. Nano Letters, 2017, 17, 313-321.	9.1	402
2	Self-powered diamond/β-Ga ₂ O ₃ photodetectors for solar-blind imaging. Journal of Materials Chemistry C, 2018, 6, 5727-5732.	5.5	270
3	Ultralowâ€Threshold Laser Realized in Zinc Oxide. Advanced Materials, 2009, 21, 1613-1617.	21.0	205
4	Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution. Nano Today, 2020, 34, 100900.	11.9	147
5	Nearâ€Infrared Chemiluminescent Carbon Nanodots and Their Application in Reactive Oxygen Species Bioimaging. Advanced Science, 2020, 7, 1903525.	11.2	143
6	Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays. Journal of Materials Chemistry C, 2013, 1, 4445.	5.5	134
7	Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light: Science and Applications, 2020, 9, 44.	16.6	122
8	Efficient Red/Nearâ€Infraredâ€Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence. Advanced Science, 2019, 6, 1900766.	11.2	121
9	3D Solarâ€Blind Ga ₂ O ₃ Photodetector Array Realized Via Origami Method. Advanced Functional Materials, 2019, 29, 1906040.	14.9	120
10	Bright and Multicolor Chemiluminescent Carbon Nanodots for Advanced Information Encryption. Advanced Science, 2019, 6, 1802331.	11.2	120
11	Diamondâ€Based All arbon Photodetectors for Solarâ€Blind Imaging. Advanced Optical Materials, 2018, 6, 1800068.	7.3	117
12	Highly Sensitive Ultraviolet Photodetectors Fabricated from ZnO Quantum Dots/Carbon Nanodots Hybrid Films. Scientific Reports, 2014, 4, 7469.	3.3	116
13	Ga ₂ O ₃ photodetector arrays for solar-blind imaging. Journal of Materials Chemistry C, 2019, 7, 2557-2562.	5.5	97
14	Amorphous Gallium Oxideâ€Based Gateâ€īunable Highâ€Performance Thin Film Phototransistor for Solarâ€Blind Imaging. Advanced Electronic Materials, 2019, 5, 1900389.	5.1	95
15	Phosphorescent Carbon-Nanodots-Assisted Förster Resonant Energy Transfer for Achieving Red Afterglow in an Aqueous Solution. ACS Nano, 2021, 15, 16242-16254.	14.6	94
16	Optoelectronic Diamond: Growth, Properties, and Photodetection Applications. Advanced Optical Materials, 2018, 6, 1800359.	7.3	91
17	Ultraviolet Photodetector Based on a MgZnO Film Grown by Radio-Frequency Magnetron Sputtering. ACS Applied Materials & Interfaces, 2009, 1, 2428-2430.	8.0	82
18	Efficient and Stable Low-Bandgap Perovskite Solar Cells Enabled by a CsPbBr ₃ -Cluster Assisted Bottom-up Crystallization Approach. Journal of the American Chemical Society, 2019, 141, 20537-20546.	13.7	79

#	Article	IF	CITATIONS
19	Scalable Synthesis of Green Fluorescent Carbon Dot Powders with Unprecedented Efficiency. Advanced Optical Materials, 2020, 8, 1901938.	7.3	74
20	Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Materials and Design, 2021, 210, 110091.	7.0	68
21	Diamond based photodetectors for solar-blind communication. Optics Express, 2019, 27, 29962.	3.4	65
22	Wavelengthâ€Tunable Electroluminescent Light Sources from Individual Gaâ€Doped ZnO Microwires. Small, 2017, 13, 1604034.	10.0	62
23	Europium-decorated ZnO quantum dots as a fluorescent sensor for the detection of an anthrax biomarker. Journal of Materials Chemistry C, 2017, 5, 1685-1691.	5.5	59
24	Zeolite-confined carbon dots: tuning thermally activated delayed fluorescence emission <i>via</i> energy transfer. Materials Chemistry Frontiers, 2020, 4, 1404-1410.	5.9	57
25	Deep-Ultraviolet Emissive Carbon Nanodots. Nano Letters, 2019, 19, 5553-5561.	9.1	56
26	Carbon Nanodots as Dual-Mode Nanosensors for Selective Detection of Hydrogen Peroxide. Nanoscale Research Letters, 2017, 12, 447.	5.7	54
27	Lifetimeâ€Engineered Carbon Nanodots for Time Division Duplexing. Advanced Science, 2021, 8, 2003433.	11.2	54
28	Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter, 2021, 4, 1625-1638.	10.0	52
29	Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Research, 2020, 13, 875-881.	10.4	51
30	Carbon Dots-in-Zeolite via In-Situ Solvent-Free Thermal Crystallization: Achieving High-Efficiency and Ultralong Afterglow Dual Emission. CCS Chemistry, 2020, 2, 118-127.	7.8	50
31	Brighten Triplet Excitons of Carbon Nanodots for Multicolor Phosphorescence Films. Nano Letters, 2022, 22, 4097-4105.	9.1	49
32	Hybrid quadrupolar resonances stimulated at short wavelengths using coupled plasmonic silver nanoparticle aggregation. Journal of Materials Chemistry C, 2014, 2, 56-63.	5.5	48
33	Orthorhombic C14 carbon: A novel superhard sp3 carbon allotrope. Carbon, 2020, 156, 309-312.	10.3	47
34	Carbon Dotsâ€inâ€EuAPOâ€5 Zeolite: Tripleâ€Emission for Multilevel Luminescence Antiâ€Counterfeiting. Small, 2021, 17, e2103374.	10.0	47
35	Broadband photodetection of 2D Bi2O2Se–MoSe2 heterostructure. Journal of Materials Science, 2019, 54, 14742-14751.	3.7	46
36	Electrically pumped Fabry–Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes. Nanoscale, 2018, 10, 18774-18785.	5.6	45

#	Article	IF	CITATIONS
37	Hydrophilic ZnO Nanoparticles@Calcium Alginate Composite for Water Purification. ACS Applied Materials & Interfaces, 2020, 12, 13305-13315.	8.0	44
38	Bandgap engineering of Gallium oxides by crystalline disorder. Materials Today Physics, 2021, 18, 100369.	6.0	44
39	Solar-blind photodetectors based on MXenes– <i>β</i> -Ga ₂ O ₃ Schottky junctions. Journal Physics D: Applied Physics, 2020, 53, 484001.	2.8	44
40	White Light Afterglow in Carbon Dots Achieved via Synergy between the Roomâ€Temperature Phosphorescence and the Delayed Fluorescence. Small, 2022, 18, e2105415.	10.0	44
41	Recent progress of carbon dots in targeted bioimaging and cancer therapy. Theranostics, 2022, 12, 2860-2893.	10.0	44
42	Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy, 2022, 101, 107549.	16.0	44
43	Advanced encryption based on fluorescence quenching of ZnO nanoparticles. Journal of Materials Chemistry C, 2017, 5, 7167-7173.	5.5	42
44	Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Research, 2021, 14, 2231-2240.	10.4	41
45	Wavelength-Tunable Ultraviolet Electroluminescence from Ga-Doped ZnO Microwires. ACS Applied Materials & Interfaces, 2017, 9, 40743-40751.	8.0	40
46	Fluorescent Nano-Biomass Dots: Ultrasonic-Assisted Extraction and Their Application as Nanoprobe for Fe3+ detection. Nanoscale Research Letters, 2019, 14, 130.	5.7	40
47	Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon, 2021, 173, 427-432.	10.3	39
48	Carbon-ZnO alternating quantum dot chains: electrostatic adsorption assembly and white light-emitting device application. Nanoscale, 2018, 10, 7155-7162.	5.6	38
49	ZnO-based deep-ultraviolet light-emitting devices. Chinese Physics B, 2017, 26, 047703.	1.4	37
50	Piezophototronicâ€Effectâ€Enhanced Electrically Pumped Lasing. Advanced Materials, 2017, 29, 1602832.	21.0	35
51	Lifetime-Engineered Phosphorescent Carbon Dots-in-Zeolite Composites for Naked-Eye Visible Multiplexing. CCS Chemistry, 2021, 3, 252-264.	7.8	34
52	Ultraviolet phosphorescent carbon nanodots. Light: Science and Applications, 2022, 11, .	16.6	33
53	Near-infrared carbon nanodots for effective identification and inactivation of Gram-positive bacteria. Nano Research, 2022, 15, 1699-1708.	10.4	32
54	Ratiometric fluorescence sensor based on europium-grafted ZnO quantum dots for visual and colorimetric detection of tetracycline. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 259, 119901.	3.9	29

#	Article	IF	CITATIONS
55	Electrically driven lasers from van der Waals heterostructures. Nanoscale, 2018, 10, 9602-9607.	5.6	28
56	Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic zinc oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites. Journal of Hazardous Materials, 2021, 418, 126013.	12.4	28
57	Nonequilibrium hot-electron-induced wavelength-tunable incandescent-type light sources. Photonics Research, 2020, 8, 91.	7.0	27
58	Ga ₂ O ₃ -Based Solar-Blind Position-Sensitive Detector for Noncontact Measurement and Optoelectronic Demodulation. Nano Letters, 2022, 22, 4888-4896.	9.1	27
59	Ga2O3 solar-blind position-sensitive detectors. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	26
60	Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots. Nano Research, 2022, 15, 2545-2551.	10.4	26
61	High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes. Nano Research, 2022, 15, 7631-7638.	10.4	26
62	Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires <i>via</i> metal quasiparticle film decoration. Nanoscale, 2018, 10, 5678-5688.	5.6	25
63	Pressure-Induced Ultra-Broad-Band Emission of a Cs ₂ AgBiBr ₆ Perovskite Thin Film. Journal of Physical Chemistry C, 2020, 124, 1732-1738.	3.1	25
64	Self-powered NiO@ZnO-nanowire-heterojunction ultraviolet micro-photodetectors. Optical Materials Express, 2019, 9, 2775.	3.0	24
65	Sb-Doped ZnO microwires: emitting filament and homojunction light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 10938-10946.	5.5	23
66	Phonon-Assisted Photoluminescence Up-Conversion of Silicon-Vacancy Centers in Diamond. Journal of Physical Chemistry Letters, 2018, 9, 6656-6661.	4.6	21
67	Plasticizer-free polymer membrane potentiometric sensors based on molecularly imprinted polymers for determination of neutral phenols. Analytica Chimica Acta, 2020, 1121, 50-56.	5.4	21
68	Near-infrared light-emitting devices from individual heavily Ga-doped ZnO microwires. Journal of Materials Chemistry C, 2017, 5, 2542-2551.	5.5	20
69	Diamond-graphite nanocomposite synthesized from multi-walled carbon nanotubes fibers. Carbon, 2021, 172, 138-143.	10.3	20
70	Nearâ€infrared chemiluminescent carbon nanogels for oncology imaging and therapy. SmartMat, 2022, 3, 269-285.	10.7	20
71	Ga ₂ O ₃ based multilevel solar-blind photomemory array with logic, arithmetic, and image storage functions. Materials Horizons, 2021, 8, 3368-3376.	12.2	19
72	Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence. Nanoscale Research Letters, 2016, 11, 425.	5.7	18

#	Article	IF	CITATIONS
73	Rewritable Painting Realized from Ambient-Sensitive Fluorescence of ZnO Nanoparticles. Scientific Reports, 2017, 7, 42232.	3.3	18
74	Humidity Sensors Realized via Negative Photoconductivity Effect in Nanodiamonds. Journal of Physical Chemistry Letters, 2021, 12, 4079-4084.	4.6	18
75	Enhancing the mechanoluminescence of traditional ZnS:Mn phosphors via Li+ Co-doping. Journal of Luminescence, 2020, 225, 117364.	3.1	18
76	Localized Excitonic Electroluminescence from Carbon Nanodots. Journal of Physical Chemistry Letters, 2022, 13, 1587-1595.	4.6	18
77	Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires. Nanoscale, 2014, 6, 1354-1361.	5.6	17
78	Multicolor biomass based carbon nanodots for bacterial imaging. Chinese Chemical Letters, 2022, 33, 798-802.	9.0	15
79	Electrically pumped random lasers with p-diamond as a hole source. Optica, 2015, 2, 558.	9.3	14
80	Computational Prediction of a Novel Superhard sp ³ Trigonal Carbon Allotrope with Bandgap Larger than Diamond. Chinese Physics Letters, 2021, 38, 076101.	3.3	14
81	Wafer-sized polycrystalline diamond photodetector planar arrays for solar-blind imaging. Journal of Materials Chemistry C, 2022, 10, 6488-6496.	5.5	14
82	Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene*. Chinese Physics B, 2020, 29, 108102.	1.4	13
83	Recycling Synthetic Route to Full-Color Fluorescent Carbon Nanodots. ACS Sustainable Chemistry and Engineering, 2022, 10, 1624-1632.	6.7	13
84	Transparent ultraviolet photovoltaic cells. Optics Letters, 2016, 41, 685.	3.3	11
85	Gram-scale and solvent-free synthesis of Mn-doped lead halide perovskite nanocrystals. Journal of Alloys and Compounds, 2020, 815, 152393.	5.5	11
86	Zero-biased solar-blind photodetectors based on AlN/β-Ga ₂ O ₃ heterojunctions. Semiconductor Science and Technology, 2021, 36, 065007.	2.0	11
87	Solarâ€Blind Positionâ€Sensitive Detectors Fabricated from βâ€Ga ₂ O ₃ /Polycrystalline Diamond Heterojunctions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100347.	2.4	11
88	Towards efficient and stable multi-color carbon nanoparticle phosphors: synergy between inner polar groups and outer silica matrix. Science China Materials, 2018, 61, 1191-1200.	6.3	10
89	Ultrasensitive Mechano-Stimuli Luminescence Enhancement in ZnO Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 3557-3562.	4.6	10
90	MAPbBrxCl3-x quantum dots in Pb(OH)Br for stable blue light-emitting devices. Journal of Luminescence, 2021, 236, 118158.	3.1	10

#	Article	IF	CITATIONS
91	Electrical-pumping spasing action from cross-stacked microwires. Journal of Materials Chemistry C, 2019, 7, 10933-10944.	5.5	9
92	Fluorescence of ZnO/carbon mixture and application in acid rain detection. RSC Advances, 2017, 7, 1841-1846.	3.6	8
93	Surface chemical engineering towards efficient and bright chemiluminescent carbon nanodots. Applied Surface Science, 2021, 559, 149947.	6.1	8
94	Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application. Journal of Colloid and Interface Science, 2018, 529, 1-10.	9.4	7
95	Oleylamine-assisted and temperature-controlled synthesis of ZnO nanoparticles and their application in encryption. Nanotechnology, 2019, 30, 015702.	2.6	7
96	Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO*. Chinese Physics B, 2020, 29, 058504.	1.4	7
97	Development and characterization of 108 SNP markers in the Iwagaki oyster, Crassostrea nippona. Conservation Genetics Resources, 2019, 11, 437-442.	0.8	6
98	Multiplex PCR Sets of Novel Microsatellite Loci for Iwagaki Oyster Crassostrea nippona and Their Application in Parentage Assignment. Journal of Ocean University of China, 2020, 19, 191-198.	1.2	6
99	Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga ₂ O ₃ . Chinese Physics B, 2021, 30, 078504.	1.4	6
100	Ultrasensitive monolayer-MoS2 heterojunction photodetectors realized via an asymmetric Fabry-Perot cavity. Science China Materials, 2022, 65, 1861-1868.	6.3	5
101	Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Food Chemistry, 2022, 388, 132994.	8.2	5
102	Comparison of crystallization behavior of Trans-1,4-polyisoprene under different crystallization temperature, pressure and tension. Journal of Polymer Research, 2019, 26, 1.	2.4	4
103	Rare earth nanoparticles for sprayed and intravenous NIR II imaging and photodynamic therapy of tongue cancer. Nanoscale Advances, 2022, 4, 2224-2232.	4.6	4
104	The Effect of Network Structure on Compressive Fatigue Behavior of Unfilled Styrene-Butadiene Rubber. Advances in Materials Science and Engineering, 2020, 2020, 1-9.	1.8	3
105	Electron-hole plasma Fabry-Perot lasing in a Ga-incorporated ZnO microbelt via Ag nanoparticle deposition. Optics Express, 2022, 30, 740.	3.4	3
106	Effects of tension fatigue on the structure and properties of carbon black filled-SBR and SBR/TPI blends. Journal of Polymer Engineering, 2019, 40, 13-20.	1.4	2
107	Plasma Treatments and Light Extraction from Fluorinated CVD-Grown (400) Single Crystal Diamond Nanopillars. Journal of Carbon Research, 2020, 6, 37.	2.7	2
108	Pentaheptite diamond: a new carbon allotrope. Journal of Physics Condensed Matter, 2022, 34, 184003.	1.8	0