
Wenjun Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3262979/publications.pdf Version: 2024-02-01

WENHIN OUVANC

#	Article	lF	CITATIONS
1	The Biological Functions of T Helper 17 Cell Effector Cytokines in Inflammation. Immunity, 2008, 28, 454-467.	14.3	1,721
2	Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature, 2007, 445, 648-651.	27.8	1,697
3	Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Medicine, 2008, 14, 282-289.	30.7	1,670
4	Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell, 2017, 169, 1342-1356.e16.	28.9	1,540
5	Regulation and Functions of the IL-10 Family of Cytokines in Inflammation and Disease. Annual Review of Immunology, 2011, 29, 71-109.	21.8	1,441
6	The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 2019, 575, 217-223.	27.8	1,375
7	STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. Journal of Experimental Medicine, 2009, 206, 1465-1472.	8.5	880
8	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
9	Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature, 2018, 564, 268-272.	27.8	742
10	Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer. Cell, 2020, 181, 442-459.e29.	28.9	741
11	Inhibition of Th1 Development Mediated by GATA-3 through an IL-4-Independent Mechanism. Immunity, 1998, 9, 745-755.	14.3	722
12	IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature, 2012, 491, 259-263.	27.8	641
13	Stat6-Independent GATA-3 Autoactivation Directs IL-4-Independent Th2 Development and Commitment. Immunity, 2000, 12, 27-37.	14.3	630
14	IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity, 2019, 50, 871-891.	14.3	603
15	Signaling and Transcription in T Helper Development. Annual Review of Immunology, 2000, 18, 451-494.	21.8	584
16	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
17	Therapeutic opportunities of the IL-22–IL-22R1 system. Nature Reviews Drug Discovery, 2014, 13, 21-38.	46.4	464
18	The Effects of IL-20 Subfamily Cytokines on Reconstituted Human Epidermis Suggest Potential Roles in Cutaneous Innate Defense and Pathogenic Adaptive Immunity in Psoriasis. Journal of Immunology, 2007, 178, 2229-2240.	0.8	457

#	Article	IF	CITATIONS
19	An interleukin-17–mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nature Medicine, 2013, 19, 1114-1123.	30.7	395
20	IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nature Immunology, 2011, 12, 1159-1166.	14.5	393
21	<scp>IL</scp> â€22, not simply a Th17 cytokine. Immunological Reviews, 2013, 252, 116-132.	6.0	391
22	Th22 Cells Are an Important Source of IL-22 for Host Protection against Enteropathogenic Bacteria. Immunity, 2012, 37, 1061-1075.	14.3	381
23	Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nature Immunology, 2013, 14, 937-948.	14.5	368
24	Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes and Immunity, 2005, 6, 319-331.	4.1	364
25	Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature, 2014, 514, 237-241.	27.8	363
26	IL-22–producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12768-12773.	7.1	301
27	A Genomic Regulatory Element That Directs Assembly and Function of Immune-Specific AP-1–IRF Complexes. Science, 2012, 338, 975-980.	12.6	298
28	ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature, 2005, 436, 1030-1034.	27.8	292
29	The IL-20 subfamily of cytokines — from host defence to tissue homeostasis. Nature Reviews Immunology, 2014, 14, 783-795.	22.7	287
30	Interleukin (IL)-23 mediates <i>Toxoplasma gondii</i> –induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. Journal of Experimental Medicine, 2009, 206, 3047-3059.	8.5	262
31	The Cytokine IL-22 Promotes Pathogen Colonization by Suppressing Related Commensal Bacteria. Immunity, 2014, 40, 262-273.	14.3	252
32	IL-18–stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production. Nature Immunology, 2001, 2, 157-164.	14.5	240
33	A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1116-1121.	7.1	231
34	NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature, 2014, 509, 235-239.	27.8	198
35	Prevention and cure of rotavirus infection via TLR5/NLRC4–mediated production of IL-22 and IL-18. Science, 2014, 346, 861-865.	12.6	188
36	Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in TH17 cells. Nature Immunology, 2011, 12, 1238-1245.	14.5	187

#	Article	IF	CITATIONS
37	Induction of interferon- \hat{I}^3 production in Th1 CD4+ T cells: evidence for two distinct pathways for promoter activation. European Journal of Immunology, 1999, 29, 548-555.	2.9	186
38	A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4–ERK5 axis. Journal of Experimental Medicine, 2015, 212, 1571-1587.	8.5	170
39	Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harbor Perspectives in Biology, 2019, 11, a028548.	5.5	163
40	Interleukin-22 Induces Interleukin-18 Expression from Epithelial Cells during Intestinal Infection. Immunity, 2015, 42, 321-331.	14.3	162
41	IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. Mucosal Immunology, 2013, 6, 69-82.	6.0	161
42	IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nature Immunology, 2011, 12, 941-948.	14.5	145
43	Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8712-8717.	7.1	139
44	IL-17RC Is Required for IL-17A– and IL-17F–Dependent Signaling and the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2010, 184, 4307-4316.	0.8	130
45	Human Anti-tumor Immunity: Insights from Immunotherapy Clinical Trials. Immunity, 2020, 52, 36-54.	14.3	127
46	The Function Role of GATA-3 in Th1 and Th2 Differentiation. Immunologic Research, 2003, 28, 25-38.	2.9	122
47	The ILâ€17 pathway as a major therapeutic target in autoimmune diseases. Annals of the New York Academy of Sciences, 2011, 1217, 60-76.	3.8	116
48	Dectin-1-Dependent Interleukin-22 Contributes to Early Innate Lung Defense against Aspergillus fumigatus. Infection and Immunity, 2012, 80, 410-417.	2.2	115
49	Regulation of epithelial immunity by IL-17 family cytokines. Trends in Immunology, 2012, 33, 343-349.	6.8	115
50	Signaling via the IL-20 receptor inhibits cutaneous production of IL- $1\hat{l}^2$ and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nature Immunology, 2013, 14, 804-811.	14.5	115
51	IL-17RC Is Required for Immune Signaling via an Extended SEF/IL-17R Signaling Domain in the Cytoplasmic Tail. Journal of Immunology, 2010, 185, 1063-1070.	0.8	114
52	The IL-17 Family Cytokines in Immunity and Disease. Journal of Clinical Immunology, 2010, 30, 185-195.	3.8	110
53	Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature, 2015, 518, 417-421.	27.8	110
54	Pulmonary Th17 Antifungal Immunity Is Regulated by the Gut Microbiome. Journal of Immunology, 2016, 197, 97-107.	0.8	108

#	Article	IF	CITATIONS
55	Regulation of Interleukin-10 Expression. Advances in Experimental Medicine and Biology, 2016, 941, 89-116.	1.6	108
56	An Instructive Component in T Helper Cell Type 2 (Th2) Development Mediated by Gata-3. Journal of Experimental Medicine, 2001, 193, 643-650.	8.5	100
57	The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90. Nature Immunology, 2013, 14, 72-81.	14.5	98
58	The Ets transcription factor ERM is Th1-specific and induced by IL-12 through a Stat4-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3888-3893.	7.1	97
59	Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease. Cytokine and Growth Factor Reviews, 2010, 21, 435-441.	7.2	96
60	Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice. Mucosal Immunology, 2012, 5, 99-109.	6.0	96
61	Activation of epithelial STAT3 regulates intestinal homeostasis. Cell Cycle, 2010, 9, 652-655.	2.6	89
62	Homeostatic IL-23 receptor signaling limits Th17 response through IL-22–mediated containment of commensal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13942-13947.	7.1	85
63	Role of IL-22 in Microbial Host Defense. Current Topics in Microbiology and Immunology, 2014, 380, 213-236.	1.1	85
64	Friend of GATA-1 Represses GATA-3–dependent Activity in CD4+ T Cells. Journal of Experimental Medicine, 2001, 194, 1461-1471.	8.5	82
65	A role for Th17 cells in the regulation of tertiary lymphoid follicles. European Journal of Immunology, 2012, 42, 2255-2262.	2.9	75
66	Minor Structural Change to Tertiary Sulfonamide RORc Ligands Led to Opposite Mechanisms of Action. ACS Medicinal Chemistry Letters, 2015, 6, 276-281.	2.8	74
67	IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice. PLoS ONE, 2017, 12, e0170639.	2.5	74
68	Targeting the development and effector functions of TH17 cells. Seminars in Immunology, 2007, 19, 383-393.	5.6	73
69	Regulation of interleukin-10 and interleukin-22 expression in T helper cells. Current Opinion in Immunology, 2011, 23, 605-612.	5.5	64
70	Discovery of imidazo[1,5-a]pyridines and -pyrimidines as potent and selective RORc inverse agonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2907-2912.	2.2	60
71	IL-17-Induced Act1-Mediated Signaling Is Critical for Cuprizone-Induced Demyelination. Journal of Neuroscience, 2012, 32, 8284-8292.	3.6	58
72	Structure-based design of substituted hexafluoroisopropanol-arylsulfonamides as modulators of RORc. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6604-6609.	2.2	58

#	Article	IF	CITATIONS
73	Discovery of 1-{4-[3-Fluoro-4-((3 <i>S</i> ,6 <i>R</i>)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin- (GNE-3500): a Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C (RORc or ROR ^{[3}) Inverse Agonist. Journal of Medicinal Chemistry, 2015, 58, 5308-5322.	I-yl}-ethar 6.4	ၢ၀ឭၜၘ
74	IL-22 in mucosal immunity. Mucosal Immunology, 2008, 1, 335-338.	6.0	56
75	Post-translational regulation of RORγt—A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine and Growth Factor Reviews, 2016, 30, 1-17.	7.2	54
76	Mice deficient in NRROS show abnormal microglial development and neurological disorders. Nature Immunology, 2017, 18, 633-641.	14.5	53
77	Proteomic Profiling of Surface Proteins on Th1 and Th2 Cells. Journal of Proteome Research, 2005, 4, 400-409.	3.7	49
78	IL-17A–Induced PLET1 Expression Contributes to Tissue Repair and Colon Tumorigenesis. Journal of Immunology, 2017, 199, 3849-3857.	0.8	49
79	Reduction in lipophilicity improved the solubility, plasma–protein binding, and permeability of tertiary sulfonamide RORc inverse agonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3891-3897.	2.2	45
80	Integrative Biology Approach Identifies Cytokine Targeting Strategies for Psoriasis. Science Translational Medicine, 2014, 6, 223ra22.	12.4	41
81	Pre-clinical and translational pharmacology of a human interleukin-22 IgG fusion protein for potential treatment of infectious or inflammatory diseases. Biochemical Pharmacology, 2018, 152, 224-235.	4.4	41
82	Unexpected Characteristics of the IFN-Î ³ Reporters in Nontransformed T Cells. Journal of Immunology, 2001, 167, 855-865.	0.8	40
83	Murine Insulin Growth Factor-like (IGFL) and Human IGFL1 Proteins Are Induced in Inflammatory Skin Conditions and Bind to a Novel Tumor Necrosis Factor Receptor Family Member, IGFLR1. Journal of Biological Chemistry, 2011, 286, 18969-18981.	3.4	38
84	The Serine Protease Marapsin Is Expressed in Stratified Squamous Epithelia and Is Up-regulated in the Hyperproliferative Epidermis of Psoriasis and Regenerating Wounds. Journal of Biological Chemistry, 2009, 284, 218-228.	3.4	36
85	LILRB1 Blockade Enhances Bispecific T Cell Engager Antibody–Induced Tumor Cell Killing by Effector CD8+ T Cells. Journal of Immunology, 2019, 203, 1076-1087.	0.8	35
86	Targeting interferon-α: a promising approach for systemic lupus erythematosus therapy. Lupus, 2004, 13, 348-352.	1.6	33
87	A Novel IL-25 Signaling Pathway through STAT5. Journal of Immunology, 2015, 194, 4528-4534.	0.8	30
88	Th17 Cells at the Crossroads of Autoimmunity, Inflammation, and Atherosclerosis. Immunity, 2014, 40, 10-12.	14.3	28
89	PILRα Negatively Regulates Mouse Inflammatory Arthritis. Journal of Immunology, 2014, 193, 860-870.	0.8	28
90	TRAF4-SMURF2–Mediated DAZAP2 Degradation Is Critical for IL-25 Signaling and Allergic Airway Inflammation. Journal of Immunology, 2015, 194, 2826-2837.	0.8	28

#	Article	IF	CITATIONS
91	Deciphering the crosstalk among IL-1 and IL-10 family cytokines in intestinal immunity. Trends in Immunology, 2015, 36, 471-478.	6.8	28
92	Innate-like function of memory Th17 cells for enhancing endotoxin-induced acute lung inflammation through IL-22. International Immunology, 2016, 28, 233-243.	4.0	28
93	A reversed sulfonamide series of selective RORc inverse agonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5769-5776.	2.2	27
94	Cutting Edge: IL-17B Uses IL-17RA and IL-17RB to Induce Type 2 Inflammation from Human Lymphocytes. Journal of Immunology, 2019, 202, 1935-1941.	0.8	24
95	Unravelling the heterogeneity and dynamic relationships of tumorâ€infiltrating T cells by singleâ€cell RNA sequencing analysis. Journal of Leukocyte Biology, 2020, 107, 917-932.	3.3	21
96	Novel therapeutic targets along the Th17 pathway. European Journal of Immunology, 2009, 39, 670-675.	2.9	20
97	STARTRAC analyses of scRNAseq data from tumor models reveal T cell dynamics and therapeutic targets. Journal of Experimental Medicine, 2021, 218, .	8.5	15
98	Psoriasis-like skin lesions are dependent on IL-23 but develop in the absence of IL-22 in a model mouse. Journal of Dermatological Science, 2014, 73, 261-264.	1.9	9
99	Nonclinical safety assessment of a human interleukinâ€22 <scp>FC IG</scp> Âfusion protein demonstrates inÂvitro to inÂvivo and crossâ€species translatability. Pharmacology Research and Perspectives, 2018, 6, e00434.	2.4	8
100	Inflammatory Bowel Disease Susceptibility Gene <i>C1ORF106</i> Regulates Intestinal Epithelial Permeability. ImmunoHorizons, 2018, 2, 164-171.	1.8	8
101	The effects of 2ip and 2,4-D on rice calli differentiation. Plant Growth Regulation, 1996, 19, 19-24.	3.4	7
102	Even Neurons Are Excited by Th17 Cells. Immunity, 2010, 33, 298-300.	14.3	5
103	Impaired B cell immunity in IL-22 knock-out mice in collagen induced arthritis. Annals of the Rheumatic Diseases, 2011, 70, A58-A59.	0.9	5
104	The Itch to degrade ROR-γt. Nature Immunology, 2016, 17, 898-900.	14.5	5
105	Dual Mechanisms for Balancing Th17 and Treg Cell Fate by CREB. EBioMedicine, 2017, 25, 20-21.	6.1	5
106	Exposure-Effect Relationships in Established Rat Adjuvant-Induced and Collagen-Induced Arthritis: A Translational Pharmacokinetic-Pharmacodynamic Analysis. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 406-418.	2.5	5
107	TRIMming TGF-Î ² signals in Th17 cells. Journal of Experimental Medicine, 2018, 215, 1775-1776.	8.5	3
108	A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4–ERK5 axis. Journal of Cell Biology, 2015, 210, 2106OIA178.	5.2	1

Wenjun Ouyang

#	Article	IF	CITATIONS
109	Role of cytokine therapy in the treatment of psoriasis. Drug Discovery Today: Therapeutic Strategies, 2007, 4, 25-31.	0.5	0
110	The Roles of IL-22 and Its Related Family Members in the Pathogenesis of Psoriasis. , 2011, , 445-462.		0
111	STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. Journal of Cell Biology, 2009, 186, i1-i1.	5.2	0
112	Interleukin-22: A Bridge Between Epithelial Innate Host Defense and Immune Cells. , 2014, , 147-177.		0
113	The IL-20 Subfamily of Cytokines and Their Receptors. , 2016, , 554-562.		0