Rajendra Kurapati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3262808/publications.pdf

Version: 2024-02-01

24 papers 1,540 citations

471509 17 h-index 25 g-index

25 all docs

25 docs citations

25 times ranked

3101 citing authors

#	Article	IF	Citations
1	Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Advanced Materials, 2016, 28, 6052-6074.	21.0	335
2	Dispersibilityâ€Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small, 2015, 11, 3985-3994.	10.0	215
3	Degradation of Singleâ€Layer and Fewâ€Layer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie - International Edition, 2018, 57, 11722-11727.	13.8	135
4	Near-infrared light-responsive graphene oxide composite multilayer capsules: a novel route for remote controlled drug delivery. Chemical Communications, 2013, 49, 734-736.	4.1	117
5	Enzymatic Biodegradability of Pristine and Functionalized Transition Metal Dichalcogenide MoS ₂ Nanosheets. Advanced Functional Materials, 2017, 27, 1605176.	14.9	109
6	Graphene oxide based multilayer capsules with unique permeability properties: facile encapsulation of multiple drugs. Chemical Communications, 2012, 48, 6013.	4.1	68
7	White Graphene undergoes Peroxidase Degradation. Angewandte Chemie - International Edition, 2016, 55, 5506-5511.	13.8	67
8	Covalent chemical functionalization enhances the biodegradation of graphene oxide. 2D Materials, 2018, 5, 015020.	4.4	63
9	Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes. Biomaterials, 2015, 72, 20-28.	11.4	61
10	Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chemical Society Reviews, 2020, 49, 6224-6247.	38.1	61
11	Recent Developments in Layer-by-Layer Technique for Drug Delivery Applications. ACS Applied Bio Materials, 2019, 2, 5512-5527.	4.6	59
12	Composite cyclodextrin–calcium carbonate porous microparticles and modified multilayer capsules: novel carriers for encapsulation of hydrophobic drugs. Journal of Materials Chemistry B, 2013, 1, 3175.	5.8	56
13	Synergistic photothermal antimicrobial therapy using graphene oxide/polymer composite layer-by-layer thin films. RSC Advances, 2016, 6, 39852-39860.	3.6	46
14	Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discussions, 2021, 227, 189-203.	3.2	30
15	Cyclodextrin grafted calcium carbonate vaterite particles: efficient system for tailored release of hydrophobic anticancer or hormone drugs. RSC Advances, 2016, 6, 104537-104548.	3 . 6	22
16	Peroxidase mimicking DNAzymes degrade graphene oxide. Nanoscale, 2018, 10, 19316-19321.	5.6	22
17	White Graphene undergoes Peroxidase Degradation. Angewandte Chemie, 2016, 128, 5596-5601.	2.0	19
18	Fluorescence Enhancement in Langmuirâ-'Blodgett Films: Role of Amphiphile Structure, Orientation, and Assembly. Journal of Physical Chemistry B, 2010, 114, 849-856.	2.6	14

#	Article	lF	CITATIONS
19	Degradation of Singleâ€Layer and Fewâ€Layer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie, 2018, 130, 11896-11901.	2.0	9
20	Dual Drug Conjugate Loaded Nanoparticles for the Treatment of Cancer. Current Drug Delivery, 2015, 12, 782-794.	1.6	9
21	Facile synthesis of Graphene Oxide/Double-stranded DNA composite liquid crystals and Hydrogels. Journal of Chemical Sciences, 2016, 128, 325-330.	1.5	8
22	Additiveâ€free Aqueous Dispersions of Twoâ€Dimensional Materials with Glial Cell Compatibility and Enzymatic Degradability. Chemistry - A European Journal, 2021, 27, 7434-7443.	3.3	5
23	Advanced protection against environmental degradation of silver mirror stacks for space application. Journal of Materials Science and Technology, 2021, 64, 1-9.	10.7	3
24	Editorial: Nanobiophotonics and Related Novel Materials Aimed at Biosciences and Biomedicine. Frontiers in Bioengineering and Biotechnology, 2022, 10, 898752.	4.1	1