Olga Zhaxybayeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3261940/publications.pdf

Version: 2024-02-01

62 papers

3,960 citations

201674 27 h-index 57 g-index

79 all docs

79 docs citations

79 times ranked 4099 citing authors

#	Article	IF	CITATIONS
1	Evolution of DNA packaging in gene transfer agents. Virus Evolution, 2021, 7, veab015.	4.9	36
2	Nutrient supplementation experiments with saltern microbial communities implicate utilization of DNA as a source of phosphorus. ISME Journal, 2021, 15, 2853-2864.	9.8	12
3	Newly identified proviruses in Thermotogota suggest that viruses are the vehicles on the highways of interphylum gene sharing. Environmental Microbiology, 2021, 23, 7105-7120.	3.8	4
4	Selection for Reducing Energy Cost of Protein Production Drives the GC Content and Amino Acid Composition Bias in Gene Transfer Agents. MBio, 2020, 11 , .	4.1	12
5	Global cellulose biomass, horizontal gene transfers and domain fusions drive microbial expansin evolution. New Phytologist, 2020, 226, 921-938.	7.3	19
6	Machine-Learning Classification Suggests That Many Alphaproteobacterial Prophages May Instead Be Gene Transfer Agents. Genome Biology and Evolution, 2019, 11, 2941-2953.	2.5	24
7	The structure of a highly-conserved picocyanobacterial protein reveals a Tudor domain with an RNA-binding function. Journal of Biological Chemistry, 2019, 294, 14333-14344.	3.4	3
8	An Introduced Crop Plant Is Driving Diversification of the Virulent Bacterial Pathogen Erwinia tracheiphila. MBio, 2018, 9, .	4.1	28
9	A null model for microbial diversification. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5414-E5423.	7.1	9
10	Genomic insights into temperature-dependent transcriptional responses of Kosmotoga olearia, a deep-biosphere bacterium that can grow from 20 to 79°C. Extremophiles, 2017, 21, 963-979.	2.3	11
11	Insights into origin and evolution of $\hat{l}\pm$ -proteobacterial gene transfer agents. Virus Evolution, 2017, 3, vex036.	4.9	53
12	Functional and Evolutionary Characterization of a Gene Transfer Agent's Multilocus "Genome― Molecular Biology and Evolution, 2016, 33, 2530-2543.	8.9	58
13	Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen <i>Erwinia Tracheiphila</i>	2.5	34
14	â€~Ménage à trois': a selfish genetic element uses a virus to propagate within <scp><i>T</i></scp> <i>hermotogales</i> . Environmental Microbiology, 2015, 17, 3278-3288.	3.8	21
15	Draft Genome Sequence of Erwinia tracheiphila, an Economically Important Bacterial Pathogen of Cucurbits. Genome Announcements, 2015, 3, .	0.8	14
16	Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum <i>Thermotogae</i> . Canadian Journal of Microbiology, 2015, 61, 655-670.	1.7	47
17	Evidence for extensive gene flow and <i>Thermotoga</i> subpopulations in subsurface and marine environments. ISME Journal, 2015, 9, 1532-1542.	9.8	36
18	Quantitative and Functional Characterization of the Hyper-Conserved Protein of Prochlorococcus and Marine Synechococcus. PLoS ONE, 2014, 9, e109327.	2.5	4

#	Article	IF	CITATIONS
19	Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana. Photosynthesis Research, 2013, 115, 43-54.	2.9	42
20	Cell sorting analysis of geographically separated hypersaline environments. Extremophiles, 2013, 17, 265-275.	2.3	46
21	What Is a Prokaryote?., 2013,, 21-37.		8
22	Anciently duplicated genes reduce uncertainty in molecular clock estimates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12168-12169.	7.1	3
23	The Mystery of Eukaryotic Cell Origin. BioScience, 2012, 62, 997-998.	4.9	0
24	Genome Sequence of the Mesophilic Thermotogales Bacterium Mesotoga prima MesG1.Ag.4.2 Reveals the Largest Thermotogales Genome To Date. Genome Biology and Evolution, 2012, 4, 812-820.	2.5	24
25	Quartet decomposition server: a platform for analyzing phylogenetic trees. BMC Bioinformatics, 2012, 13, 123.	2.6	6
26	Gene transfer agents: phage-like elements of genetic exchange. Nature Reviews Microbiology, 2012, 10, 472-482.	28.6	336
27	Lateral gene transfer. Current Biology, 2011, 21, R242-R246.	3.9	151
28	Metagenomics and the Units of Biological Organization. BioScience, 2010, 60, 102-112.	4.9	51
29	The Genome of <i>Thermosipho africanus</i> TCF52B: Lateral Genetic Connections to the <i>Firmicutes</i> and <i>Archaea</i> Journal of Bacteriology, 2009, 191, 1974-1978.	2.2	31
30	Intertwined Evolutionary Histories of Marine Synechococcus and Prochlorococcus marinus. Genome Biology and Evolution, 2009, 1, 325-339.	2.5	80
31	On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5865-5870.	7.1	221
32	Detection and Quantitative Assessment of Horizontal Gene Transfer. Methods in Molecular Biology, 2009, 532, 195-213.	0.9	23
33	On the origin of prokaryotic species. Genome Research, 2009, 19, 744-756.	5.5	207
34	Gene Transfer and the Reconstruction of Life's Early History from Genomic Data. Space Science Reviews, 2008, 135, 115-131.	8.1	19
35	Integronâ€associated gene cassettes in Halifax Harbour: assessment of a mobile gene pool in marine sediments. Environmental Microbiology, 2008, 10, 1024-1038.	3.8	59
36	Actinorhodopsins: proteorhodopsinâ€like gene sequences found predominantly in nonâ€marine environments. Environmental Microbiology, 2008, 10, 1039-1056.	3.8	136

#	Article	IF	Citations
37	Gene Transfer and the Reconstruction of Life's Early History from Genomic Data. Space Sciences Series of ISSI, 2008, , 115-131.	0.0	3
38	HORIZONTAL GENE TRANSFER: ITS DETECTION AND ROLE IN MICROBIAL EVOLUTION. Series on Advances in Bioinformatics and Computational Biology, 2008, , 137-151.	0.2	4
39	Searching for species in haloarchaea. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14092-14097.	7.1	128
40	Unsupervised Learning in Spectral Genome Analysis. , 2007, , .		1
41	Systematic overestimation of gene gain through false diagnosis of gene absence. Genome Biology, 2007, 8, 402.	9.6	23
42	Genomic plasticity in prokaryotes: the case of the square haloarchaeon. ISME Journal, 2007, 1, 235-245.	9.8	116
43	A hyperconserved protein inProchlorococcusand marineSynechococcus. FEMS Microbiology Letters, 2007, 274, 30-34.	1.8	7
44	Evolution: Reducible Complexity â€" The Case for Bacterial Flagella. Current Biology, 2007, 17, R510-R512.	3.9	15
45	Evidence for Existence of "Mesotogas,―Members of the Order Thermotogales Adapted to Low-Temperature Environments. Applied and Environmental Microbiology, 2006, 72, 5061-5068.	3.1	54
46	Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events. Genome Research, 2006, 16, 1099-1108.	5.5	278
47	PentaPlot: a software tool for the illustration of genome mosaicism. BMC Bioinformatics, 2005, 6, 139.	2.6	6
48	Ancient gene duplications and the root(s) of the tree of life. Protoplasma, 2005, 227, 53-64.	2.1	62
49	Evolutionary and Diagnostic Implications of Intragenomic Heterogeneity in the 16S rRNA Gene in Aeromonas Strains. Journal of Bacteriology, 2005, 187, 6561-6564.	2.2	89
50	Were arachnids the first to use combinatorial peptide libraries?. Peptides, 2005, 26, 131-139.	2.4	189
51	Cladogenesis, coalescence and the evolution of the three domains of life. Trends in Genetics, 2004, 20, 182-187.	6.7	86
52	Genome mosaicism and organismal lineages. Trends in Genetics, 2004, 20, 254-260.	6.7	86
53	Visualization of the phylogenetic content of five genomes using dekapentagonal maps. Genome Biology, 2004, 5, R20.	9.6	21
54	An improved probability mapping approach to assess genome mosaicism. BMC Genomics, 2003, 4, 37.	2.8	22

#	Article	IF	CITATIONS
55	Spliceosomal Introns: New Insights into their Evolution. Current Biology, 2003, 13, R764-R766.	3.9	22
56	Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 223-230.	4.0	43
57	Whole-Genome Analysis of Photosynthetic Prokaryotes. Science, 2002, 298, 1616-1620.	12.6	278
58	Inteins: Structure, Function, and Evolution. Annual Review of Microbiology, 2002, 56, 263-287.	7.3	203
59	Horizontal Gene Transfer. , 2002, , 427-435.		8
60	Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics, 2002, 3, 4.	2.8	281
61	Horizontal Transfer of Archaeal Genes into the Deinococcaceae: Detection by Molecular and Computer-Based Approaches. Journal of Molecular Evolution, 2000, 51, 587-599.	1.8	52
62	Horizontal gene transfer, gene histories, and the root of the tree of life., 0,, 178-192.		4