
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3260894/publications.pdf

Version: 2024-02-01

STEEAN C. D. RÃ1/ DICER

#	Article	IF	CITATIONS
1	How do protein aggregates escape quality control in neurodegeneration?. Trends in Neurosciences, 2022, 45, 257-271.	8.6	17
2	Double J-domain piloting of an Hsp70 substrate. Journal of Biological Chemistry, 2021, 296, 100717.	3.4	0
3	The Mitochondrial Hsp90 TRAP1 and Alzheimer's Disease. Frontiers in Molecular Biosciences, 2021, 8, 697913.	3.5	10
4	Extensive Anti-CoA Immunostaining in Alzheimer's Disease and Covalent Modification of Tau by a Key Cellular Metabolite Coenzyme A. Frontiers in Cellular Neuroscience, 2021, 15, 739425.	3.7	8
5	Molecular Strategies to Target Protein Aggregation in Huntington's Disease. Frontiers in Molecular Biosciences, 2021, 8, 769184.	3.5	21
6	Regulation of α-synuclein by chaperones in mammalian cells. Nature, 2020, 577, 127-132.	27.8	184
7	The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nature Communications, 2020, 11, 5975.	12.8	78
8	Alzheimer Cells on Their Way to Derailment Show Selective Changes in Protein Quality Control Network. Frontiers in Molecular Biosciences, 2020, 7, 214.	3.5	19
9	Behind closed gates – chaperones and charged residues determine protein fate. EMBO Journal, 2020, 39, e104939.	7.8	8
10	The mechanism of Hsp90-induced oligomerizaton of Tau. Science Advances, 2020, 6, eaax6999.	10.3	55
11	Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nature Communications, 2020, 11, 571.	12.8	28
12	MAP7 family proteins regulate kinesin-1 recruitment and activation. Journal of Cell Biology, 2019, 218, 1298-1318.	5.2	114
13	The Hsp70–Hsp90 Chaperone Cascade in Protein Folding. Trends in Cell Biology, 2019, 29, 164-177.	7.9	170
14	Hsp90 Chaperone in Disease. Heat Shock Proteins, 2019, , 473-491.	0.2	1
15	Hsp90 Breaks the Deadlock of the Hsp70 Chaperone System. Molecular Cell, 2018, 70, 545-552.e9.	9.7	124
16	Recombinant production and purification of the human protein Tau. Protein Engineering, Design and Selection, 2018, 31, 447-455.	2.1	8
17	Dancing with the Diva: Hsp90–Client Interactions. Journal of Molecular Biology, 2018, 430, 3029-3040.	4.2	86
18	Picky Hsp90—Every Game with Another Mate. Molecular Cell, 2017, 67, 899-900.	9.7	5

#	Article	IF	CITATIONS
19	Production and purification of human Hsp90 $\hat{1}^2$ in Escherichia coli. PLoS ONE, 2017, 12, e0180047.	2.5	4
20	Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nature Structural and Molecular Biology, 2016, 23, 324-332.	8.2	31
21	A script to highlight hydrophobicity and charge on protein surfaces. Frontiers in Molecular Biosciences, 2015, 2, 56.	3.5	98
22	Hsp90 interaction with clients. Trends in Biochemical Sciences, 2015, 40, 117-125.	7.5	168
23	Hsp90-Tau Complex Reveals Molecular Basis for Specificity in Chaperone Action. Cell, 2014, 156, 963-974.	28.9	269
24	Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Letters, 2013, 587, 1587-1591.	2.8	40
25	Large Extent of Disorder in Adenomatous Polyposis Coli Offers a Strategy to Guard Wnt Signalling against Point Mutations. PLoS ONE, 2013, 8, e77257.	2.5	46
26	The Vertebrate Mitotic Checkpoint Protein BUBR1 Is an Unusual Pseudokinase. Developmental Cell, 2012, 22, 1321-1329.	7.0	116
27	Sulforaphane inhibits pancreatic cancer through disrupting Hsp90–p50Cdc37 complex and direct interactions with amino acids residues of Hsp90. Journal of Nutritional Biochemistry, 2012, 23, 1617-1626.	4.2	49
28	Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E812-20.	7.1	172
29	Hsp90 structure and function studied by NMR spectroscopy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 636-647.	4.1	63
30	Determining Biophysical Protein Stability in Lysates by a Fast Proteolysis Assay, FASTpp. PLoS ONE, 2012, 7, e46147.	2.5	33
31	N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 580-585.	7.1	109
32	Critical Scaffolding Regions of the Tumor Suppressor Axin1 Are Natively Unfolded. Journal of Molecular Biology, 2011, 405, 773-786.	4.2	58
33	Studying protein–protein interactions using peptide arrays. Chemical Society Reviews, 2011, 40, 2131.	38.1	173
34	Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer?. Molecular Cancer, 2011, 10, 101.	19.2	140
35	3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes. Protein Engineering, Design and Selection, 2011, 24, 99-103.	2.1	25
36	Expressed protein ligation for a large dimeric protein. Protein Engineering, Design and Selection, 2011, 24, 495-501.	2.1	7

#	Article	IF	CITATIONS
37	Novel Hsp90 partners discovered using complementary proteomic approaches. Cell Stress and Chaperones, 2009, 14, 629-638.	2.9	42
38	Molecular Basis for Regulation of the Heat Shock Transcription Factor If 32 by the DnaK and DnaJ Chaperones. Molecular Cell, 2008, 32, 347-358.	9.7	151
39	The Structure and Interactions of the Proline-rich Domain of ASPP2. Journal of Biological Chemistry, 2008, 283, 18990-18999.	3.4	40
40	Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12277-12282.	7.1	49
41	Correlation of Levels of Folded Recombinant p53 in Escherichia coli with Thermodynamic Stability in Vitro. Journal of Molecular Biology, 2007, 372, 268-276.	4.2	86
42	Binding Specificity of an α-Helical Protein Sequence to a Full-Length Hsp70 Chaperone and Its Minimal Substrate-Binding Domainâ€. Biochemistry, 2006, 45, 13835-13846.	2.5	13
43	The central region of HDM2 provides a second binding site for p53. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1227-1232.	7.1	130
44	Structural Distortion of p53 by the Mutation R249S and its Rescue by a Designed Peptide: Implications for "Mutant Conformation― Journal of Molecular Biology, 2004, 336, 187-196.	4.2	75
45	A peptide that binds and stabilizes p53 core domain: Chaperone strategy for rescue of oncogenic mutants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 937-942.	7.1	252
46	Two sequence motifs from HIF-1Â bind to the DNA-binding site of p53. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10305-10309.	7.1	122
47	CRINEPT-TROSY NMR reveals p53 core domain bound in an unfolded form to the chaperone Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11085-11090.	7.1	99
48	The Conserved Helix C Region in the Superfamily of Interferon-γ/Interleukin-10-related Cytokines Corresponds to a High-affinity Binding Site for the HSP70 Chaperone DnaK. Journal of Biological Chemistry, 2002, 277, 25668-25676.	3.4	19
49	Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO Journal, 2001, 20, 1042-1050.	7.8	258
50	Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nature Structural Biology, 2001, 8, 427-432.	9.7	205
51	Binding specificity of <i>Escherichia coli</i> trigger factor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14244-14249.	7.1	164
52	Functional Dissection of Trigger Factor and DnaK: Interactions with Nascent Polypeptides and Thermally Denatured Proteins. Biological Chemistry, 2001, 382, 1235-43.	2.5	51
53	Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nature Structural Biology, 2000, 7, 586-593.	9.7	335
54	Molecular Basis for Interactions of the DnaK Chaperone with Substrates. Biological Chemistry, 2000, 381, 877-85.	2.5	111

#	Article	IF	CITATIONS
55	Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. Journal of Molecular Biology, 2000, 304, 245-251.	4.2	65
56	Substrate Specificity of the SecB Chaperone. Journal of Biological Chemistry, 1999, 274, 34219-34225.	3.4	137
57	Distribution of Binding Sequences for the Mitochondrial Import Receptors Tom20, Tom22, and Tom70 in a Presequence-carrying Preprotein and a Non-cleavable Preprotein. Journal of Biological Chemistry, 1999, 274, 16522-16530.	3.4	208
58	Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO Journal, 1999, 18, 6934-6949.	7.8	552
59	Interaction of Hsp70 chaperones with substrates. Nature Structural and Molecular Biology, 1997, 4, 342-349.	8.2	334
60	Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO Journal, 1997, 16, 1501-1507.	7.8	715
61	Regulatory Region C of theE. coliHeat Shock Transcription Factor, σ32, Constitutes a DnaK Binding Site and is Conserved Among Eubacteria. Journal of Molecular Biology, 1996, 256, 829-837.	4.2	118
62	Expression of nitric oxide synthase and colocalisation with Jun, Fos and Krox transcription factors in spinal cord neurons following noxious stimulation of the rat hindpaw. Molecular Brain Research, 1994, 22, 245-258.	2.3	113