Robert J Salmond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3260791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unleashing T cell responses to cancer through removal of intracellular checkpoints. Immunology and Cell Biology, 2022, 100, 18-20.	2.3	2
2	Hematopoietic stem cell gene therapy targeting TGFβ enhances the efficacy of irradiation therapy in a preclinical glioblastoma model. , 2021, 9, e001143.		7
3	Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation. JCI Insight, 2021, 6, .	5.0	23
4	The Role of Non-essential Amino Acids in T Cell Function and Anti-tumour Immunity. Archivum Immunologiae Et Therapiae Experimentalis, 2021, 69, 29.	2.3	14
5	Targeting the tumor microenvironment and TÂcell metabolism for effective cancer immunotherapy. European Journal of Immunology, 2019, 49, 1147-1152.	2.9	32
6	Deletion of PTPN22 improves effector and memory CD8+ T cell responses to tumors. JCI Insight, 2019, 4,	5.0	28
7	Regulation of autoimmune and antiâ€ŧumour Tâ€cell responses by <scp>PTPN</scp> 22. Immunology, 2018, 154, 377-382.	4.4	33
8	Anti–PD-1/anti–CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8 ⁺ T cell trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1540-E1549.	7.1	165
9	mTOR Regulation of Glycolytic Metabolism in T Cells. Frontiers in Cell and Developmental Biology, 2018, 6, 122.	3.7	142
10	Resistance to TGFÎ ² suppression and improved anti-tumor responses in CD8+ T cells lacking PTPN22. Nature Communications, 2017, 8, 1343.	12.8	37
11	Loss of the Protein Tyrosine Phosphatase PTPN22 Reduces Mannan-Induced Autoimmune Arthritis in SKG Mice. Journal of Immunology, 2016, 197, 429-440.	0.8	23
12	Multifunctional roles of the autoimmune disease-associated tyrosine phosphatase PTPN22 in regulating T cell homeostasis. Cell Cycle, 2015, 14, 705-711.	2.6	16
13	Mechanistic Target of Rapamycin Complex 1/S6 Kinase 1 Signals Influence T Cell Activation Independently of Ribosomal Protein S6 Phosphorylation. Journal of Immunology, 2015, 195, 4615-4622.	0.8	24
14	Innate Lymphoid Cells in Type 2 Immune Responses. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 161-167.	2.3	2
15	Type 2 Innate Lymphoid Cells Drive CD4+ Th2 Cell Responses. Journal of Immunology, 2014, 192, 2442-2448.	0.8	268
16	Nitric oxide enhances Th9 cell differentiation and airway inflammation. Nature Communications, 2014, 5, 4575.	12.8	59
17	The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nature Immunology, 2014, 15, 875-883.	14.5	99
18	Interleukin-33 and the function of innate lymphoid cells. Trends in Immunology, 2012, 33, 389-396.	6.8	132

Robert J Salmond

#	Article	IF	CITATIONS
19	IL-33 induces innate lymphoid cell–mediated airway inflammation by activating mammalian target of rapamycin. Journal of Allergy and Clinical Immunology, 2012, 130, 1159-1166.e6.	2.9	106
20	IL-33-Induced Type 2 Innate Lymphoid Cells Impact Upon CD4 T Cell Activation In The Absence Of Antigen Stimulation. , 2012, , .		0
21	Mislocalization of Lck impairs thymocyte differentiation and can promote development of thymomas. Blood, 2011, 117, 108-117.	1.4	10
22	The influence of mTOR on T helper cell differentiation and dendritic cell function. European Journal of Immunology, 2011, 41, 2137-2141.	2.9	34
23	How does the mammalian target of rapamycin (mTOR) influence CD8 T-cell differentiation?. Cell Cycle, 2010, 9, 3024-3029.	2.6	10
24	MAPK, Phosphatidylinositol 3-Kinase, and Mammalian Target of Rapamycin Pathways Converge at the Level of Ribosomal Protein S6 Phosphorylation to Control Metabolic Signaling in CD8 T Cells. Journal of Immunology, 2009, 183, 7388-7397.	0.8	108
25	T"ell receptor proximal signaling via the Srcâ€family kinases, Lck and Fyn, influences T"ell activation, differentiation, and tolerance. Immunological Reviews, 2009, 228, 9-22.	6.0	326
26	CD4+ T cell hyper-responsiveness in CD45 transgenic mice is independent of isoform. International Immunology, 2008, 20, 819-827.	4.0	10
27	Fyn Regulates the Duration of TCR Engagement Needed for Commitment to Effector Function. Journal of Immunology, 2007, 179, 4635-4644.	0.8	59
28	The Differential Regulation of Lck Kinase Phosphorylation Sites by CD45 Is Critical for T Cell Receptor Signaling Responses. Immunity, 2007, 27, 425-437.	14.3	159
29	SHP2 forecast for the immune system: fog gradually clearing. Trends in Immunology, 2006, 27, 154-160.	6.8	50
30	The <i>src</i> Homology 2 Domain-Containing Tyrosine Phosphatase 2 Regulates Primary T-Dependent Immune Responses and Th Cell Differentiation. Journal of Immunology, 2005, 175, 6498-6508.	0.8	40
31	The B Subunit of Escherichia coli Heat-Labile Enterotoxin Induces Both Caspase-Dependent and -Independent Cell Death Pathways in CD8 + T Cells. Infection and Immunity, 2004, 72, 5850-5857.	2.2	12
32	Mutant Escherichia coli Heat-Labile Toxin B Subunit That Separates Toxoid-Mediated Signaling and Immunomodulatory Action from Trafficking and Delivery Functions. Infection and Immunity, 2003, 71, 1527-1537.	2.2	36
33	Immune modulation by the cholera-like enterotoxins. Expert Reviews in Molecular Medicine, 2002, 4, 1-16.	3.9	28