Hanqin Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3260443/publications.pdf

Version: 2024-02-01

311	35,264	89 h-index	173
papers	citations		g-index
393 all docs	393 docs citations	393 times ranked	29282 citing authors

#	Article	IF	CITATIONS
1	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	9.9	1,477
2	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	9.9	1,199
3	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	9.9	1,167
4	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	9.9	1,159
5	Spatial and temporal patterns of China's cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sensing of Environment, 2005, 98, 442-456.	11.0	918
6	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	9.9	905
7	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	9.9	824
8	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	27.8	814
9	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	9.9	801
10	Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 2001, 15, 183-206.	4.9	680
11	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	9.9	663
12	Terrestrial biosphere models need better representation of vegetation phenology: results from the <scp>N</scp> orth <scp>A</scp> merican <scp>C</scp> arbon <scp>P</scp> rogram <scp>S</scp> ite <scp>S</scp> ynthesis. Global Change Biology, 2012, 18, 566-584.	9.5	583
13	Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data. Biogeochemistry, 2010, 98, 139-151.	3.5	562
14	Global patterns of drought recovery. Nature, 2017, 548, 202-205.	27.8	560
15	Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States. Science, 2000, 287, 2004-2006.	12.6	526
16	Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 2013, 10, 753-788.	3.3	475
17	Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Science Data, 2017, 9, 181-192.	9.9	445
18	Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 1998, 396, 664-667.	27.8	419

#	Article	IF	Citations
19	Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research, 2007, 112 , .	3.3	412
20	Assessing the impacts of 1.5â€-°C global warming â€" simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 2017, 10, 4321-4345.	3.6	410
21	The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 2016, 531, 225-228.	27.8	402
22	Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 2016, 30, 40-56.	4.9	343
23	Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis. Science, 2020, 370, 1295-1300.	12.6	317
24	Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sensing of Environment, 2008, 112, 3668-3679.	11.0	300
25	Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. Forest Ecology and Management, 2010, 259, 1311-1327.	3.2	300
26	A modelâ€data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2012, 117, .	3.3	274
27	Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets*. Journal of Climate, 2014, 27, 1143-1167.	3.2	262
28	A modelâ€data intercomparison of CO ₂ exchange across North America: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2010, 115, .	3.3	247
29	Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochemical Cycles, 2015, 29, 775-792.	4.9	241
30	Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature, 2018, 562, 110-114.	27.8	240
31	Ecosystem–atmosphere exchange of CH ₄ and N ₂ O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology, 2009, 15, 692-705.	9.5	232
32	Terrestrial biosphere model performance for interâ€annual variability of landâ€atmosphere <scp><co<sub>2</co<sub></scp> <scp>CO₂</scp> <scp>CO₂</scp> <scp>CO₂</scp> <scp>CO₂</scp> <scp>CO₂</scp> <scp>CO₂</scp> <scp>CO₂</scp> <scp>CO₂</scp> <scp>CO₃</scp> <scp>CO₄</scp> <scp>CO₅</scp> <scp>CO₆</scp> <scp>CO₇</scp> <scp>CO<sub<7< sub=""></sub<7<></scp> <scp>CO₇</scp> <scp>CO<sub<7< sub=""></sub<7<></scp> <scp>CO₇</scp> <scp>CO<sub<7< sub=""></sub<7<></scp> <scp>CO₇</scp> <scp>CO₇</scp> <scp>CO₇</scp> <scp>CO₇</scp> <scp>CO₇</scp> <scp>CO₇</scp> <scp>CO₇</scp> <scp>CO₇</scp> <scp>CO₇</scp> <scp>CO<sub<7< sub=""></sub<7<></scp> <scp>CO<sub<7<sub<7<sub>7_{7_{7_{7_{7_{7_{7_{7_{7_{7<su< td=""><td>9.5</td><td>232</td></su<>}}}}}}}}}</sub<7<sub<7<sub></scp>	9.5	232
33	China's terrestrial carbon balance: Contributions from multiple global change factors. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	231
34	Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 2019, 9, 993-998.	18.8	229
35	Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances, 2020, 6, eaba2724.	10.3	229
36	Forty years of reform and opening up: China's progress toward a sustainable path. Science Advances, 2019, 5, eaau9413.	10.3	222

#	Article	IF	Citations
37	Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?. Global Change Biology, 2012, 18, 3259-3267.	9.5	215
38	Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Global Change Biology, 2019, 25, 640-659.	9.5	214
39	The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design. Geoscientific Model Development, 2013, 6, 2121-2133.	3.6	212
40	North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison. Ecological Modelling, 2012, 232, 144-157.	2.5	207
41	The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data. Geoscientific Model Development, 2014, 7, 2875-2893.	3.6	207
42	Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environment International, 2019, 131, 104966.	10.0	205
43	Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Global Ecology and Biogeography, 2012, 21, 260-271.	5.8	189
44	China's land cover and land use change from 1700 to 2005: Estimations from highâ€resolution satellite data and historical archives. Global Biogeochemical Cycles, 2010, 24, .	4.9	188
45	China's changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophysical Research Letters, 2005, 32, .	4.0	186
46	History of land use in India during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives. Global and Planetary Change, 2014, 121, 78-88.	3.5	184
47	Impact of largeâ€scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles, 2014, 28, 585-600.	4.9	181
48	Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosystem Health and Sustainability, 2015, 1, 1-20.	3.1	180
49	Drivers of change in China's energy-related CO ₂ emissions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29-36.	7.1	174
50	Can N ₂ O emissions offset the benefits from soil organic carbon storage?. Global Change Biology, 2021, 27, 237-256.	9.5	174
51	Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments. Frontiers in Ecology and the Environment, 2012, 10, 520-527.	4.0	172
52	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	12.8	168
53	Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development, 2013, 6, 617-641.	3.6	165
54	Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Scientific Reports, 2017, 7, 4765.	3.3	156

#	Article	IF	CITATIONS
55	Spatial and temporal patterns of CH ₄ and N ₂ O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosciences, 2010, 7, 2673-2694.	3.3	153
56	Effects of Landâ€Use and Landâ€Cover Change on Evapotranspiration and Water Yield in China During 1900â€2000 ¹ . Journal of the American Water Resources Association, 2008, 44, 1193-1207.	2.4	152
57	Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10, 356-362.	18.8	152
58	Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America. Global Biogeochemical Cycles, 2018, 32, 389-416.	4.9	147
59	Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and processâ€based estimates and uncertainty. Global Change Biology, 2019, 25, 314-326.	9.5	147
60	Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global Change Biology, 2018, 24, 1919-1934.	9.5	145
61	Net exchanges of CO $<$ sub $>$ 2 $<$ /sub $>$, CH $<$ sub $>$ 4 $<$ /sub $>$, and N $<$ sub $>$ 2 $<$ /sub $>$ 0 between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming. Journal of Geophysical Research, 2011, 116, .	3.3	139
62	Global manure nitrogen production and application in cropland during 1860–2014: a 5†arcmin gridded global dataset for Earth system modeling. Earth System Science Data, 2017, 9, 667-678.	9.9	138
63	Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environmental Pollution, 2012, 164, 89-101.	7.5	137
64	Century-Scale Responses of Ecosystem Carbon Storage and Flux to Multiple Environmental Changes in the Southern United States. Ecosystems, 2012, 15, 674-694.	3.4	130
65	Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 2020, 24, 1485-1509.	4.9	130
66	Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 2017, 12, 094013.	5.2	129
67	Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction. Global Change Biology, 2021, 27, 5848-5864.	9.5	127
68	Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric <scp>CO₂</scp> in the 21st century. Earth's Future, 2015, 3, 15-35.	6.3	125
69	The Global N2O Model Intercomparison Project. Bulletin of the American Meteorological Society, 2018, 99, 1231-1251.	3.3	123
70	Pools and distributions of soil phosphorus in China. Global Biogeochemical Cycles, 2005, 19, .	4.9	122
71	Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama. Hydrological Processes, 2014, 28, 5530-5546.	2.6	120
72	Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 2015, 10, 094008.	5.2	119

#	Article	IF	CITATIONS
73	Does a General Temperature-Dependent Q10 Model of Soil Respiration Exist at Biome and Global Scale?. Journal of Integrative Plant Biology, 2005, 47, 1288-1302.	8.5	117
74	Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nature Climate Change, 2020, 10, 138-142.	18.8	114
75	Modelling Spatial and Temporal Patterns of Tropical Land Use Change. Journal of Biogeography, 1995, 22, 753.	3.0	113
76	North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Climatic Change, 2015, 129, 413-426.	3.6	112
77	Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. Journal of Geophysical Research, 2001, 106, 34179-34188.	3.3	108
78	Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. Journal of Geophysical Research, 2007, 112, .	3.3	108
79	Quantification of global and national nitrogen budgets for crop production. Nature Food, 2021, 2, 529-540.	14.0	108
80	Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 2021, 12, 118.	12.8	106
81	The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences, 2012, 9, 3571-3586.	3.3	103
82	Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences, 2016, 13, 3735-3755.	3.3	102
83	Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change, 2012, 114, 379-397.	3.6	100
84	Methane emission from global livestock sector during 1890–2014: Magnitude, trends and spatiotemporal patterns. Global Change Biology, 2017, 23, 4147-4161.	9.5	100
85	Chesapeake Bay nitrogen fluxes derived from a landâ€estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1666-1695.	3.0	97
86	Increasing Mississippi river discharge throughout the 21st century influenced by changes in climate, land use, and atmospheric CO ₂ . Geophysical Research Letters, 2014, 41, 4978-4986.	4.0	96
87	Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environmental Research Letters, 2012, 7, 044020.	5.2	95
88	Data-driven estimates of global nitrous oxide emissions from croplands. National Science Review, 2020, 7, 441-452.	9.5	95
89	Effect of nitrogen deposition on China's terrestrial carbon uptake in the context of multifactor environmental changes. Ecological Applications, 2012, 22, 53-75.	3.8	93
90	The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO ₂ in the United States. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 414.	1.6	92

#	Article	IF	Citations
91	Pattern and change of soil organic carbon storage in China: 1960s-1980s. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 416-427.	1.6	92
92	Carbon cycle uncertainty in the Alaskan Arctic. Biogeosciences, 2014, 11, 4271-4288.	3.3	92
93	Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR. PLoS ONE, 2013, 8, e70816.	2.5	91
94	Past and future drought in Mongolia. Science Advances, 2018, 4, e1701832.	10.3	91
95	The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 414-452.	1.6	90
96	Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecology and Biogeography, 2000, 9, 315-335.	5.8	90
97	Longâ€term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resources Research, 2013, 49, 1988-2012.	4.2	90
98	Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls. Global Biogeochemical Cycles, 2016, 30, 1246-1263.	4.9	88
99	Optimizing resource use efficiencies in the food–energy–water nexus for sustainable agriculture: from conceptual model to decision support system. Current Opinion in Environmental Sustainability, 2018, 33, 104-113.	6.3	88
100	Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: A processâ€based modeling study. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 757-772.	3.0	87
101	Convergence in the relationship of CO ₂ and N ₂ O exchanges between soil and atmosphere within terrestrial ecosystems. Global Change Biology, 2008, 14, 1651-1660.	9.5	86
102	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	4.9	85
103	Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global and Planetary Change, 2003, 37, 201-201.	3.5	83
104	Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. Journal of Geophysical Research, 2007, 112, .	3.3	81
105	WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 2015, 12, 3321-3349.	3.3	81
106	Evaluation of terrestrial carbon cycle models with atmospheric CO2measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects. Global Biogeochemical Cycles, 2002, 16, 39-1-39-15.	4.9	79
107	Climate and land use controls over terrestrial water use efficiency in monsoon Asia. Ecohydrology, 2011, 4, 322-340.	2.4	79
108	Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems. Global Ecology and Biogeography, 2011, 20, 391-406.	5.8	78

#	Article	IF	Citations
109	<scp>C</scp> hina's crop productivity and soil carbon storage as influenced by multifactor global change. Global Change Biology, 2012, 18, 2945-2957.	9.5	78
110	Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model. Global Change Biology, 2013, 19, 571-588.	9.5	78
111	Evaluation of continental carbon cycle simulations with North American flux tower observations. Ecological Monographs, 2013, 83, 531-556.	5.4	75
112	Revisiting enteric methane emissions from domestic ruminants and their \hat{l} 13CCH4 source signature. Nature Communications, 2019, 10, 3420.	12.8	75
113	Patterns of soil nitrogen storage in China. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	73
114	Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis. Journal of Geophysical Research, 2011, 116, .	3.3	72
115	Cropland redistribution to marginal lands undermines environmental sustainability. National Science Review, 2022, 9, nwab091.	9.5	71
116	Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences, 2010, 7, 3637-3655.	3.3	70
117	Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2021, 2, 886-893.	14.0	68
118	A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019. Earth System Science Data, 2021, 13, 5213-5252.	9.9	68
119	The size of the land carbon sink in China. Nature, 2022, 603, E7-E9.	27.8	67
120	Spatial and temporal patterns of CO ₂ and CH ₄ fluxes in China's croplands in response to multifactor environmental changes. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 222.	1.6	65
121	Regional contribution to variability and trends of global gross primary productivity. Environmental Research Letters, 2017, 12, 105005.	5.2	65
122	Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190507.	4.0	64
123	Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China. Chemosphere, 2013, 90, 856-865.	8.2	63
124	Half-century nitrogen deposition increase across China: A gridded time-series data set for regional environmental assessments. Atmospheric Environment, 2014, 97, 68-74.	4.1	63
125	Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170304.	4.0	63
126	Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000 . Journal of Geophysical Research, 2006 , 111 , .	3.3	61

#	Article	IF	Citations
127	Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters, 2012, 7, 034009.	5.2	61
128	Landscape-level terrestrial methane flux observed from a very tall tower. Agricultural and Forest Meteorology, 2015, 201, 61-75.	4.8	61
129	Missing pieces to modeling the Arctic-Boreal puzzle. Environmental Research Letters, 2018, 13, 020202.	5.2	61
130	The Effects of Urbanization on Net Primary Productivity in Southeastern China. Environmental Management, 2010, 46, 404-410.	2.7	60
131	Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000. Environmental Pollution, 2007, 149, 327-335.	7.5	59
132	Sources of Uncertainty in Regional and Global Terrestrial CO ₂ Exchange Estimates. Global Biogeochemical Cycles, 2020, 34, e2019GB006393.	4.9	59
133	Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. International Journal of Biometeorology, 2016, 60, 21-32.	3.0	58
134	Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 2019, 12, 809-814.	12.9	58
135	Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth System Science Data, 2022, 14, 1639-1675.	9.9	58
136	Effect of Land-Cover Change on Terrestrial Carbon Dynamics in the Southern United States. Journal of Environmental Quality, 2006, 35, 1533-1547.	2.0	57
137	Synergistic effects of climate change and grazing on net primary production of Mongolian grasslands. Ecosphere, 2016, 7, e01274.	2.2	57
138	Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012. Science of the Total Environment, 2016, 541, 1592-1602.	8.0	57
139	Carbon storage in northeast China as estimated from vegetation and soil inventories. Environmental Pollution, 2002, 116, S157-S165.	7.5	56
140	Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: Reconstructing global fire history for the 20th and early 21st centuries. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 249-263.	3.0	56
141	Regional trends and drivers of the global methane budget. Global Change Biology, 2022, 28, 182-200.	9.5	56
142	Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agricultural and Forest Meteorology, 2013, 182-183, 111-127.	4.8	55
143	Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 2018, 15, 3421-3437.	3.3	55
144	Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation. Advances in Meteorology, 2014, 2014, 1-17.	1.6	54

#	Article	IF	Citations
145	Centuryâ€long increasing trend and variability of dissolved organic carbon export from the Mississippi River basin driven by natural and anthropogenic forcing. Global Biogeochemical Cycles, 2016, 30, 1288-1299.	4.9	53
146	Regional sources of nitrous oxide over the United States: Seasonal variation and spatial distribution. Journal of Geophysical Research, 2012, 117, .	3. 3	52
147	Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation. Global Change Biology, 2020, 26, 6116-6133.	9.5	52
148	Methane exchange between marshland and the atmosphere over China during 1949–2008. Global Biogeochemical Cycles, 2012, 26, .	4.9	51
149	Impact of hydrological variations on modeling of peatland CO ₂ fluxes: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2012, 117, .	3.3	50
150	Hydrological Responses to Climate and Landâ€Use Changes along the North American East Coast: A 110â€Year Historical Reconstruction. Journal of the American Water Resources Association, 2015, 51, 47-67.	2.4	50
151	Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 2020, 26, 3336-3355.	9.5	50
152	Increased nitrogen export from eastern North America to the Atlantic Ocean due to climatic and anthropogenic changes during 1901–2008. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1046-1068.	3.0	49
153	Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO ₂ . Biogeosciences, 2021, 18, 4985-5010.	3.3	49
154	Effects of multiple environment stresses on evapotranspiration and runoff over eastern China. Journal of Hydrology, 2012, 426-427, 39-54.	5 . 4	48
155	Toward "optimal―integration of terrestrial biosphere models. Geophysical Research Letters, 2015, 42, 4418-4428.	4.0	48
156	Continental-scale quantification of post-fire vegetation greenness recovery in temperate and boreal North America. Remote Sensing of Environment, 2017, 199, 277-290.	11.0	48
157	Global Nitrous Oxide Emissions From Pasturelands and Rangelands: Magnitude, Spatiotemporal Patterns, and Attribution. Global Biogeochemical Cycles, 2019, 33, 200-222.	4.9	47
158	Effects of Forest Regrowth and Urbanization on Ecosystem Carbon Storage in a Rural–Urban Gradient in the Southeastern United States. Ecosystems, 2008, 11, 1211-1222.	3.4	46
159	Contribution of increasing CO $<$ sub $>$ 2 $<$ /sub $>$ and climate change to the carbon cycle in China's ecosystems. Journal of Geophysical Research, 2008, 113, .	3.3	46
160	Climate extremes dominating seasonal and interannual variations in carbon export from the Mississippi River Basin. Global Biogeochemical Cycles, 2015, 29, 1333-1347.	4.9	46
161	Largely underestimated carbon emission from land use and land cover change in the conterminous United States. Global Change Biology, 2019, 25, 3741-3752.	9.5	46
162	Weakened growth of croplandâ€N ₂ O emissions in China associated with nationwide policy interventions. Global Change Biology, 2019, 25, 3706-3719.	9.5	46

#	Article	IF	Citations
163	Recent leveling off of vegetation greenness and primary production reveals the increasing soil water limitations on the greening Earth. Science Bulletin, 2021, 66, 1462-1471.	9.0	46
164	Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century. PLoS ONE, 2014, 9, e112810.	2.5	45
165	Terrestrial carbon balance in tropical Asia: Contribution from cropland expansion and land management. Global and Planetary Change, 2013, 100, 85-98.	3.5	44
166	Climate extremes and ozone pollution: a growing threat to chinaâ \in ^M s food security. Ecosystem Health and Sustainability, 2016, 2, .	3.1	44
167	Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets. Atmospheric Environment, 2017, 165, 310-321.	4.1	44
168	Longâ€Term Trajectory of Nitrogen Loading and Delivery From Mississippi River Basin to the Gulf of Mexico. Global Biogeochemical Cycles, 2020, 34, e2019GB006475.	4.9	44
169	Longâ€ŧerm terrestrial carbon dynamics in the Midwestern United States during 1850–2015: Roles of land use and cover change and agricultural management. Global Change Biology, 2018, 24, 2673-2690.	9.5	43
170	State of the science in reconciling topâ€down and bottomâ€up approaches for terrestrial CO ₂ budget. Global Change Biology, 2020, 26, 1068-1084.	9.5	43
171	Satellite estimation of coastal pCO2 and air-sea flux of carbon dioxide in the northern Gulf of Mexico. Remote Sensing of Environment, 2018, 207, 71-83.	11.0	42
172	Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems. Frontiers in Ecology and the Environment, 2012, 10, 528-536.	4.0	41
173	Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Environmental Research Letters, 2017, 12, 085001.	5.2	41
174	Halfâ€Century Ammonia Emissions From Agricultural Systems in Southern Asia: Magnitude, Spatiotemporal Patterns, and Implications for Human Health. GeoHealth, 2018, 2, 40-53.	4.0	41
175	Increased lightâ€use efficiency in northern terrestrial ecosystems indicated by CO ₂ and greening observations. Geophysical Research Letters, 2016, 43, 11,339.	4.0	40
176	Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 2019, 275, 47-58.	4.8	40
177	Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains National Park. Environmental Pollution, 2007, 149, 336-347.	7.5	39
178	Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environmental Research Letters, 2017, 12, 064007.	5.2	39
179	The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 2019, 10, 4195.	12.8	39
180	Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agricultural and Forest Meteorology, 2021, 311, 108663.	4.8	39

#	Article	IF	Citations
181	A model for seasonality and distribution of leaf area index of forests and its application to China. Journal of Vegetation Science, 2002, 13, 817-830.	2.2	38
182	Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 724-736.	3.0	38
183	Vegetation Functional Properties Determine Uncertainty of Simulated Ecosystem Productivity: A Traceability Analysis in the East Asian Monsoon Region. Global Biogeochemical Cycles, 2019, 33, 668-689.	4.9	38
184	Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management. Geography and Sustainability, 2020, 1, 59-69.	4.3	38
185	Observational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissions. Global Biogeochemical Cycles, 2014, 28, 146-160.	4.9	37
186	Carbon and Water Use Efficiencies: A Comparative Analysis of Ten Terrestrial Ecosystem Models under Changing Climate. Scientific Reports, 2019, 9, 14680.	3.3	37
187	Interdisciplinary research at the Urban–Rural interface: The West ga project. Urban Ecosystems, 2005, 8, 7-21.	2.4	36
188	Increased extreme precipitation challenges nitrogen load management to the Gulf of Mexico. Communications Earth & Environment, 2020, 1 , .	6.8	36
189	Climateâ€Driven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Global Products. Global Biogeochemical Cycles, 2020, 34, e2020GB006613.	4.9	36
190	Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901–2005. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1372-1393.	3.0	35
191	Multifactor controls on terrestrial N ₂ O flux over North America from 1979 through 2010. Biogeosciences, 2012, 9, 1351-1366.	3.3	34
192	Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. Journal of Chinese Geography, 2015, 25, 1027-1044.	3.9	34
193	Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geoscientific Model Development, 2022, 15, 1289-1316.	3.6	34
194	Identifying Climatic Controls on Ring Width: The Timing of Correlations between Tree Rings and NDVI. Earth Interactions, 2008, 12, 1-14.	1.5	33
195	Detritus Quality Controls Macrophyte Decomposition under Different Nutrient Concentrations in a Eutrophic Shallow Lake, North China. PLoS ONE, 2012, 7, e42042.	2.5	33
196	The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 2020, 12, 1295-1320.	9.9	33
197	Decadal trends in the seasonal-cycle amplitude of terrestrial CO ₂ exchange resulting from the ensemble of terrestrial biosphere models. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 28968.	1.6	31
198	Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environmental Research Letters, 2016, 11, 074011.	5.2	31

#	Article	IF	Citations
199	Enhancing soil drought induced by climate change and agricultural practices: Observational and experimental evidence from the semiarid area of northern China. Agricultural and Forest Meteorology, 2017, 243, 74-83.	4.8	31
200	Phosphorus Inventory for the Conterminous United States (2002–2012). Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005684.	3.0	31
201	Using CESM-RESFire to understand climate–fire–ecosystem interactions and the implications for decadal climate variability. Atmospheric Chemistry and Physics, 2020, 20, 995-1020.	4.9	31
202	Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agricultural and Forest Meteorology, 2013, 182-183, 145-155.	4.8	30
203	Evaluating the agreement between measurements and models of net ecosystem exchange at different times and timescales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis. Biogeosciences, 2013, 10, 6893-6909.	3.3	30
204	A growing importance of large fires in conterminous United States during 1984–2012. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2625-2640.	3.0	30
205	Benchmarking carbon fluxes of the ISIMIP2a biome models. Environmental Research Letters, 2017, 12, 045002.	5.2	30
206	A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change, 2020, 61, 102029.	7.8	30
207	Pattern and change of soil organic carbon storage in China: 1960s–1980s. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 416.	1.6	29
208	Effect of continued nitrogen enrichment on greenhouse gas emissions from a wetland ecosystem in the Sanjiang Plain, Northeast China: A 5 year nitrogen addition experiment. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 741-751.	3.0	29
209	Climate Extreme Versus Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and Precipitation. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005252.	3.0	29
210	Modelled land use and land cover change emissions $\hat{a}\in$ a spatio-temporal comparison of different approaches. Earth System Dynamics, 2021, 12, 635-670.	7.1	29
211	Terrestrial biodiversity threatened by increasing global aridity velocity under high-level warming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
212	Climate and Land Use Controls on Soil Organic Carbon in the Loess Plateau Region of China. PLoS ONE, 2014, 9, e95548.	2.5	28
213	Spatiotemporal patterns of evapotranspiration along the North American east coast as influenced by multiple environmental changes. Ecohydrology, 2015, 8, 714-725.	2.4	28
214	Increasing carbon footprint of grain crop production in the US Western Corn Belt. Environmental Research Letters, 2018, 13, 124007.	5.2	28
215	Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	28
216	Multi-factor controls on terrestrial carbon dynamics in urbanized areas. Biogeosciences, 2014, 11, 7107-7124.	3.3	27

#	Article	IF	CITATIONS
217	Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve. Journal of Environmental Sciences, 2019, 75, 359-369.	6.1	27
218	Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay. Biogeosciences, 2020, 17, 3779-3796.	3.3	27
219	Industrial land expansion in rural China threatens environmental securities. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	26
220	Increased nitrogen enrichment and shifted patterns in the world's grassland: 1860–2016. Earth System Science Data, 2019, 11, 175-187.	9.9	26
221	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	3.3	26
222	Environmental Stress and Steppe Nomads: Rethinking the History of the Uyghur Empire (744–840) with Paleoclimate Data. Journal of Interdisciplinary History, 2018, 48, 439-463.	0.0	25
223	Modeling Primary Productivity of the Terrestrial Biosphere in Changing Environments: Toward a Dynamic Biosphere Model. Critical Reviews in Plant Sciences, 1998, 17, 541-557.	5.7	25
224	Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. Environmental Research Letters, 2020, 15, 044006.	5.2	25
225	Nitrous oxide (N ₂ O) emissions from California based on 2010 CalNex airborne measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2809-2820.	3.3	24
226	Carbon and energy fluxes in cropland ecosystems: a model-data comparison. Biogeochemistry, 2016, 129, 53-76.	3.5	24
227	Recent patterns of terrestrial net primary production in africa influenced by multiple environmental changes. Ecosystem Health and Sustainability, 2015, 1, 1-15.	3.1	23
228	Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China. PLoS ONE, 2015, 10, e0137409.	2.5	23
229	Global N ₂ O Emissions From Cropland Driven by Nitrogen Addition and Environmental Factors: Comparison and Uncertainty Analysis. Global Biogeochemical Cycles, 2020, 34, e2020GB006698.	4.9	23
230	Centuryâ€long changes and drivers of soil nitrous oxide (N ₂ O) emissions across the contiguous United States. Global Change Biology, 2022, 28, 2505-2524.	9.5	23
231	EMISSIONS OF N2O AND CO2FROM TERRA FIRME FORESTS IN RONDOÌ,NIA, BRAZIL. , 2004, 14, 214-220.		22
232	Predicting response of fuel load to future changes in climate and atmospheric composition in the Southern United States. Forest Ecology and Management, 2010, 260, 556-564.	3.2	22
233	Terrestrial net primary productivity in India during 1901–2010: contributions from multiple environmental changes. Climatic Change, 2015, 132, 575-588.	3.6	22
234	Impacts of Multiple Environmental Changes on Longâ€Term Nitrogen Loading From the Chesapeake Bay Watershed. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005826.	3.0	22

#	Article	IF	Citations
235	Conservation tillage increases corn and soybean water productivity across the Ohio River Basin. Agricultural Water Management, 2021, 254, 106962.	5.6	22
236	Centuryâ€scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Global Biogeochemical Cycles, 2015, 29, 1549-1566.	4.9	21
237	Modeling <i>p</i> CO ₂ variability in the Gulf of Mexico. Biogeosciences, 2016, 13, 4359-4377.	3.3	21
238	Improving Representation of Crop Growth and Yield in the Dynamic Land Ecosystem Model and Its Application to China. Journal of Advances in Modeling Earth Systems, 2018, 10, 1680-1707.	3.8	21
239	Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: A meta-analysis. Science of the Total Environment, 2022, 820, 153288.	8.0	21
240	Integrating Herbivore Population Dynamics Into a Global Land Biosphere Model: Plugging Animals Into the Earth System. Journal of Advances in Modeling Earth Systems, 2017, 9, 2920-2945.	3.8	20
241	Responses of global terrestrial water use efficiency to climate change and rising atmospheric CO ₂ concentration in the twenty-first century. International Journal of Digital Earth, 2018, 11, 558-582.	3.9	20
242	Development of a REgionâ€Specific Ecosystem Feedback Fire (RESFire) Model in the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 417-445.	3.8	20
243	Integrating a processâ€based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1208-1224.	3.0	19
244	Net primary production of major plant functional types in China: Vegetation classification and ecosystem simulation. Acta Ecologica Sinica, 2015, 35, 28-36.	1.9	19
245	Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems. Environmental Research Letters, 2020, 15, 025005.	5.2	19
246	Severe Longâ€Lasting Drought Accelerated Carbon Depletion in the Mongolian Plateau. Geophysical Research Letters, 2019, 46, 5303-5312.	4.0	18
247	Satellite observations of forest resilience to hurricanes along the northern Gulf of Mexico. Forest Ecology and Management, 2020, 472, 118243.	3.2	18
248	Impacts of tillage practices on soil carbon stocks in the US corn-soybean cropping system during 1998 to 2016. Environmental Research Letters, 2020, 15, 014008.	5.2	18
249	Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow. Science of the Total Environment, 2021, 769, 144559.	8.0	18
250	Urban development enhances soil organic carbon storage through increasing urban vegetation. Journal of Environmental Management, 2022, 312, 114922.	7.8	18
251	Magnitude, Spatiotemporal Patterns, and Controls for Soil Organic Carbon Stocks in India during 1901–2010. Soil Science Society of America Journal, 2015, 79, 864-875.	2.2	17
252	Preindustrial nitrous oxide emissions from the land biosphere estimated by using a global biogeochemistry model. Climate of the Past, 2017, 13, 977-990.	3.4	17

#	Article	IF	CITATIONS
253	A 130â€year global inventory of methane emissions from livestock: Trends, patterns, and drivers. Global Change Biology, 2022, 28, 5142-5158.	9.5	17
254	Impacts of land use change and elevated CO ₂ on the interannual variations and seasonal cycles of gross primary productivity in China. Earth System Dynamics, 2020, 11, 235-249.	7.1	16
255	Riverine Carbon Cycling Over the Past Century in the Midâ€Atlantic Region of the United States. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005968.	3.0	16
256	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	9.9	16
257	Climate change-induced greening on the Tibetan Plateau modulated by mountainous characteristics. Environmental Research Letters, 2021, 16, 064064.	5.2	16
258	Global vegetation biomass production efficiency constrained by models and observations. Global Change Biology, 2020, 26, 1474-1484.	9.5	15
259	Response to Comments on "Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis― Science, 2021, 373, eabg7484.	12.6	15
260	Modeling ecosystem responses to prescribed fires in a phosphorus-enriched Everglades wetland: I. Phosphorus dynamics and cattail recovery. Ecological Modelling, 2010, 221, 1252-1266.	2.5	14
261	Estuarine Dissolved Organic Carbon Flux From Space: With Application to Chesapeake and Delaware Bays. Journal of Geophysical Research: Oceans, 2019, 124, 3755-3778.	2.6	14
262	Ocean Circulation Causes Strong Variability in the Midâ€Atlantic Bight Nitrogen Budget. Journal of Geophysical Research: Oceans, 2019, 124, 113-134.	2.6	14
263	Greenhouse gas balance in global pasturelands and rangelands. Environmental Research Letters, 2020, 15, 104006.	5.2	14
264	Projecting terrestrial carbon sequestration of the southeastern United States in the 21st century. Ecosphere, 2013, 4, 1-18.	2.2	13
265	Climate Change and Carbon Sequestration in Forest Ecosystems. , 2017, , 555-594.		13
266	Production and application of manure nitrogen and phosphorus in the United States since 1860. Earth System Science Data, 2021, 13, 515-527.	9.9	13
267	Spatial and temporal patterns of plantation forests in the United States since the 1930s: an annual and gridded data set for regional Earth system modeling. Earth System Science Data, 2017, 9, 545-556.	9.9	13
268	Pattern and change of a boreal forest landscape in northeastern China. Water, Air, and Soil Pollution, 1995, 82, 465-476.	2.4	12
269	Net exchanges of CO2, CH4 and N2O between marshland and the atmosphere in Northeast China as influenced by multiple global environmental changes. Atmospheric Environment, 2012, 63, 77-85.	4.1	12
270	Phosphorus biological cycle in the different Suaeda salsa marshes of the Yellow River estuary, China. Environmental Earth Sciences, 2013, 69, 2595-2608.	2.7	12

#	Article	IF	CITATIONS
271	Methane emissions from livestock in East Asia during 1961â^2019. Ecosystem Health and Sustainability, 2021, 7, .	3.1	12
272	Coupling of Phosphorus Processes With Carbon and Nitrogen Cycles in the Dynamic Land Ecosystem Model: Model Structure, Parameterization, and Evaluation in Tropical Forests. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002123.	3.8	11
273	Saturation of Global Terrestrial Carbon Sink Under a High Warming Scenario. Global Biogeochemical Cycles, 2021, 35, e2020GB006800.	4.9	11
274	Chemistry and Longâ€Term Decomposition of Roots of Douglasâ€Fir Grown under Elevated Atmospheric Carbon Dioxide and Warming Conditions. Journal of Environmental Quality, 2008, 37, 1327-1336.	2.0	11
275	Divergent historical GPP trends among state-of-the-art multi-model simulations and satellite-based products. Earth System Dynamics, 2022, 13, 833-849.	7.1	11
276	Linking global terrestrial CO ₂ fluxes and environmental drivers: inferences from the Orbiting Carbon ObservatoryÂ2 satellite and terrestrial biospheric models. Atmospheric Chemistry and Physics, 2021, 21, 6663-6680.	4.9	10
277	Forecasting and Assessing the Large-Scale and Long-Term Impacts of Global Environmental Change on Terrestrial Ecosystems in the United States and China. , 2009, , 235-266.		10
278	Projection of future wildfire emissions in western USA under climate change: contributions from changes in wildfire, fuel loading and fuel moisture. International Journal of Wildland Fire, 2022, 31, 1-13.	2.4	10
279	Heavy Precipitation Impacts on Nitrogen Loading to the Gulf of Mexico in the 21st Century: Model Projections Under Future Climate Scenarios. Earth's Future, 2022, 10, .	6.3	10
280	Emerging weed resistance increases tillage intensity and greenhouse gas emissions in the US corn–soybean cropping system. Nature Food, 2022, 3, 266-274.	14.0	10
281	The NASA Carbon Monitoring System Phase 2 synthesis: scope, findings, gaps and recommended next steps. Environmental Research Letters, 2022, 17, 063010.	5.2	10
282	Modeling ecosystem responses to prescribed fires in a phosphorus-enriched Everglades wetland: II. Phosphorus dynamics and community shift in response to hydrological and seasonal scenarios. Ecological Modelling, 2011, 222, 3942-3956.	2.5	9
283	Biosphere–atmosphere exchange of methane in India as influenced by multiple environmental changes during 1901–2010. Atmospheric Environment, 2015, 119, 192-200.	4.1	9
284	Contribution of environmental forcings to US runoff changes for the period 1950–2010. Environmental Research Letters, 2018, 13, 054023.	5.2	9
285	Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models. Environmental Research Letters, 2021, 16, 054041.	5.2	8
286	Four decades of nitrous oxide emission from Chinese aquaculture underscores the urgency and opportunity for climate change mitigation. Environmental Research Letters, 2021, 16, 114038.	5.2	8
287	Earlier leaf-flushing suppressed ecosystem productivity by draining soil water in the Mongolian Plateau. Agricultural and Forest Meteorology, 2018, 250-251, 1-8.	4.8	7
288	Interaction between pollution and climate change augments ecological risk to a coastal ecosystem. Ecosystem Health and Sustainability, 2018, 4, 161-168.	3.1	7

#	Article	IF	Citations
289	Divergent Growth Responses to Warming between Stand-Grown and Open-Grown Trees in a Dryland Montane Forest in Northwestern China. Forests, 2019, 10, 1133.	2.1	7
290	Spatiotemporal variations of carbon flux and nitrogen deposition flux linked with climate change at the centennial scale in China. Science China Earth Sciences, 2020, 63, 731-748.	5.2	7
291	Enhanced regional terrestrial carbon uptake over Korea revealed by atmospheric CO 2 measurements from 1999 to 2017. Global Change Biology, 2020, 26, 3368-3383.	9.5	7
292	Climate Change and Carbon Sequestration in Forest Ecosystems. , 2015, , 1-40.		7
293	Magnitude and Uncertainty of Nitrous Oxide Emissions From North America Based on Bottomâ€Up and Topâ€Down Approaches: Informing Future Research and National Inventories. Geophysical Research Letters, 2021, 48, e2021GL095264.	4.0	7
294	Global and Regional Patterns of Soil Nitrous Acid Emissions and Their Acceleration of Rural Photochemical Reactions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	7
295	Parameters for global ecosystem models. Nature, 1999, 399, 536-536.	27.8	6
296	Contemporary land cover and land use patterns in India estimated by different regional and global data sets. Journal of Land Use Science, 2015, 10, 95-107.	2.2	6
297	Contrasting stream water temperature responses to global change in the Mid-Atlantic Region of the United States: A process-based modeling study. Journal of Hydrology, 2021, 601, 126633.	5.4	6
298	Assessing Model Predictions of Carbon Dynamics in Global Drylands. Frontiers in Environmental Science, 2022, 10, .	3.3	5
299	Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations. Hydrology and Earth System Sciences, 2022, 26, 2045-2071.	4.9	5
300	The Power of Monitoring Stations and a CO2 Fertilization Effect: Evidence from Causal Relationships between NDVI and Carbon Dioxide. Earth Interactions, 2008, 12, 1-23.	1.5	4
301	Reducing Uncertainties of Future Global Soil Carbon Responses to Climate and Land Use Change With Emergent Constraints. Global Biogeochemical Cycles, 2020, 34, e2020GB006589.	4.9	4
302	Fertilizing Change: Carbon-Nitrogen Interactions and Carbon Storage in Land Ecosystems. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 21-36.	0.4	3
303	Reply to "Comments on â€~Half-century nitrogen deposition increase across China: A gridded time-series dataset for regional environmental assessments'― Atmospheric Environment, 2015, 101, 352-353.	4.1	3
304	Evaluating changes of biomass in global vegetation models: the role of turnover fluctuations and ENSO events. Environmental Research Letters, 2018, 13, 075002.	5.2	3
305	Global Climate Change and Greenhouse Gases Emissions in Terrestrial Ecosystems. , 2021, , 1-54.		3
306	Prospects for biological carbon sinks in greenhouse gas emissions trading systems , 0, , 115-142.		3

Hanqin Tian

#	Article	IF	CITATIONS
307	THE TERRESTRIAL CARBON BUDGET IN EAST ASIA: HUMAN AND NATURAL IMPACTS. Monsoon Asia Integrated Regional Study on Global Change, 2008, , 163-176.	0.0	3
308	Global Climate Change and Greenhouse Gases Emissions in Terrestrial Ecosystems. , 2022, , 23-76.		3
309	A Centuryâ€Long Trajectory of Phosphorus Loading and Export From Mississippi River Basin to the Gulf of Mexico: Contributions of Multiple Environmental Changes. Global Biogeochemical Cycles, 2022, 36,	4.9	3
310	Impacts of Climatic Changes on Biogeochemical Cycling in Terrestrial Ecosystems., 2012,, 433-470.		2
311	Highly reflective algae for enhancing climate change resilience in rice production. Food and Energy Security, 2021, 10, e272.	4.3	0