Giacomo Volpe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/326/publications.pdf

Version: 2024-02-01

840776 610901 28 900 11 24 citations h-index g-index papers 36 36 36 1110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatial Transcriptome Uncovers the Mouse Lung Architectures and Functions. Frontiers in Genetics, 2022, 13, 858808.	2.3	3
2	Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature, 2022, 604, 723-731.	27.8	81
3	Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell, 2021, 184, 404-421.e16.	28.9	399
4	Global Profiling of the Lysine Crotonylome in Different Pluripotent States. Genomics, Proteomics and Bioinformatics, 2021, 19, 80-93.	6.9	10
5	Single-Nucleus Chromatin Accessibility Landscape Reveals Diversity in Regulatory Regions Across Distinct Adult Rat Cortex. Frontiers in Molecular Neuroscience, 2021, 14, 651355.	2.9	8
6	The Chromatin Accessibility Landscape of Adult Rat. Frontiers in Genetics, 2021, 12, 651604.	2.3	1
7	PHC1 maintains pluripotency by organizing genome-wide chromatin interactions of the Nanog locus. Nature Communications, 2021, 12, 2829.	12.8	14
8	Capture of the newly transcribed RNA interactome using click chemistry. Nature Protocols, 2021, 16, 5193-5219.	12.0	5
9	JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency. Nature Communications, 2020, 11, 5061.	12.8	24
10	\hat{l}^2 -Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus. Science Advances, 2020, 6, eaba1593.	10.3	10
11	Generation of an induced pluripotent stem cell line (GIBHi004-A) from a Parkinson's disease patient with mutant DJ-1/PARK7 (p.L10P). Stem Cell Research, 2020, 46, 101845.	0.7	3
12	High WBP5 expression correlates with elevation of HOX genes levels and is associated with inferior survival in patients with acute myeloid leukaemia. Scientific Reports, 2020, 10, 3505.	3.3	10
13	Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency. Genomics, Proteomics and Bioinformatics, 2020, 18, 16-25.	6.9	10
14	Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. Life Science Alliance, 2020, 3, e201900356.	2.8	17
15	CEBPA-mutated leukemia is sensitive to genetic and pharmacological targeting of the MLL1 complex. Leukemia, 2019, 33, 1608-1619.	7.2	19
16	Nuclear-cytoplasmic shuttling of class IIa histone deacetylases regulates somatic cell reprogramming. Cell Regeneration, 2019, 8, 21-29.	2.6	13
17	Dependence on Myb expression is attenuated in myeloid leukaemia with N-terminal CEBPA mutations. Life Science Alliance, 2019, 2, e201800207.	2.8	6
18	CEBPA-Mutant Acute Myeloid Leukemia is Sensitive to Small-Molecule-Mediated Inhibition of the Menin-MLL Interaction. Experimental Hematology, 2018, 64, S101.	0.4	0

#	Article	IF	CITATIONS
19	MYBL2 Supports DNA Double Strand Break Repair in Hematopoietic Stem Cells. Cancer Research, 2018, 78, 5767-5779.	0.9	30
20	Fine-Tuning Mybl2 Is Required for Proper Mesenchymal-to-Epithelial Transition during Somatic Reprogramming. Cell Reports, 2018, 24, 1496-1511.e8.	6.4	18
21	Prognostic significance of high GFI1 expression in AML of normal karyotype and its association with a FLT3-ITD signature. Scientific Reports, 2017, 7, 11148.	3.3	16
22	Transcriptional regulation of SPROUTY2 by MYB influences myeloid cell proliferation and stem cell properties by enhancing responsiveness to IL-3. Leukemia, 2017, 31, 957-966.	7.2	9
23	Regulation of the Flt3 Gene in Haematopoietic Stem and Early Progenitor Cells. PLoS ONE, 2015, 10, e0138257.	2.5	23
24	C/EBPα and MYB regulate FLT3 expression in AML. Leukemia, 2013, 27, 1487-1496.	7.2	29
25	Distinct regulation of c-myb gene expression by HoxA9, Meis1 and Pbx proteins in normal hematopoietic progenitors and transformed myeloid cells. Blood Cancer Journal, 2012, 2, e76-e76.	6.2	21
26	Itga2b Regulation at the Onset of Definitive Hematopoiesis and Commitment to Differentiation. PLoS ONE, 2012, 7, e43300.	2.5	23
27	Distinct c-Myb Regulation by HoxA9, Meis1 and Pbx1 in Haemopoietic and Leukaemic-Like Stem Cells Blood, 2009, 114, 1431-1431.	1.4	0
28	Distinct Mechanisms Regulate the Expression of flt3 Gene in Normal and Leukaemia-Like Stem Cells Blood, 2009, 114, 4586-4586.	1.4	O