Selen Catania Muratoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3259547/publications.pdf

Version: 2024-02-01

32 papers

1,575 citations

331670 21 h-index 32 g-index

34 all docs

34 docs citations

34 times ranked 2327 citing authors

#	Article	IF	Citations
1	Perspectives on Cognitive Phenotypes and Models of Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317395.	2.4	4
2	Moderate aerobic exercise prevents matrix degradation and death in a mouse model of aortic dissection and aneurysm. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1786-H1801.	3.2	10
3	Regulation of tau internalization, degradation, and seeding by LRP1 reveals multiple pathways for tau catabolism. Journal of Biological Chemistry, 2021, 296, 100715.	3.4	52
4	High-Affinity Binding of LDL Receptor-Related Protein 1 to Matrix Metalloprotease 1 Requires Protease:Inhibitor Complex Formation. Biochemistry, 2020, 59, 2922-2933.	2.5	11
5	LRP1 mediates tau endocytosis in a process that is modulated by apolipoprotein E. Alzheimer's and Dementia, 2020, 16, e045959.	0.8	2
6	Macrophage LRP1 Promotes Diet-Induced Hepatic Inflammation and Metabolic Dysfunction by Modulating Wnt Signaling. Mediators of Inflammation, 2018, 2018, 1-15.	3.0	22
7	LRP1 (Low-Density Lipoprotein Receptor–Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca ²⁺ Signaling and Expression of Cytoskeleton-Related Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2651-2664.	2.4	37
8	Quantitative Micro-CT Analysis of Aortopathy in a Mouse Model of β-aminopropionitrile-induced Aortic Aneurysm and Dissection. Journal of Visualized Experiments, 2018, , .	0.3	5
9	Role of the LDL Receptor-Related Protein 1 in Regulating Protease Activity and Signaling Pathways in the Vasculature. Current Drug Targets, 2018, 19, 1276-1288.	2.1	5
10	The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling. Journal of Diabetes Research, 2017, 2017, 1-10.	2.3	32
11	LRP in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 213-216.	2.4	9
12	Smooth Muscle Cell Deletion of Low-Density Lipoprotein Receptor–Related Protein 1 Augments Angiotensin II–Induced Superior Mesenteric Arterial and Ascending Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 155-162.	2.4	60
13	Tissue-type plasminogen activator suppresses activated stellate cells through low-density lipoprotein receptor-related protein 1. Laboratory Investigation, 2015, 95, 1117-1129.	3.7	8
14	LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages. PLoS ONE, 2015, 10, e0128903.	2.5	46
15	Low-Density Lipoprotein Receptor–Related Protein-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 487-498.	2.4	87
16	LRP1 Protects the Vasculature by Regulating Levels of Connective Tissue Growth Factor and HtrA1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2137-2146.	2.4	78
17	Regulation of hepatic stellate cell activation through LRP1: a novel signaling role for tâ€PA in liver. FASEB Journal, 2013, 27, 387.4.	0.5	O
18	Macrophage LRP1 Suppresses Neo-Intima Formation during Vascular Remodeling by Modulating the TGF- \hat{l}^2 Signaling Pathway. PLoS ONE, 2011, 6, e28846.	2.5	36

#	Article	IF	CITATIONS
19	Serpin–Enzyme Receptors. Methods in Enzymology, 2011, 499, 17-31.	1.0	22
20	Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Forms a Signaling Complex with Platelet-derived Growth Factor Receptor- \hat{l}^2 in Endosomes and Regulates Activation of the MAPK Pathway. Journal of Biological Chemistry, 2010, 285, 14308-14317.	3.4	87
21	<i>Salmonella</i> pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune responses in <i>Drosophila</i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14952-14957.	7.1	26
22	The GATA factor Serpent cross-regulates lozenge and u-shaped expression during Drosophila blood cell development. Developmental Biology, 2007, 311, 636-649.	2.0	33
23	Regulation of Drosophila Friend of GATA gene, u-shaped, during hematopoiesis: A direct role for Serpent and Lozenge. Developmental Biology, 2006, 296, 561-579.	2.0	24
24	Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. Journal of Cell Biology, 2006, 173, 533-544.	5.2	239
25	DTL, the Drosophila Homolog of PIMT/Tgs1 Nuclear Receptor Coactivator-interacting Protein/RNA Methyltransferase, Has an Essential Role in Development. Journal of Biological Chemistry, 2005, 280, 12397-12404.	3.4	41
26	The Homologous Drosophila Transcriptional Adaptors ADA2a and ADA2b Are both Required for Normal Development but Have Different Functions. Molecular and Cellular Biology, 2005, 25, 8215-8227.	2.3	76
27	Intimate relationship between the genes of two transcriptional coactivators, ADA2a and PIMT, of Drosophila. Gene, 2005, 348, 13-23.	2.2	6
28	Two Different Drosophila ADA2 Homologues Are Present in Distinct GCN5 Histone Acetyltransferase-Containing Complexes. Molecular and Cellular Biology, 2003, 23, 306-321.	2.3	84
29	Acetylation of Androgen Receptor Enhances Coactivator Binding and Promotes Prostate Cancer Cell Growth. Molecular and Cellular Biology, 2003, 23, 8563-8575.	2.3	244
30	The TFIID Components Human TAF II 140 and Drosophila BIP2 (TAF II 155) Are Novel Metazoan Homologues of Yeast TAF II 47 Containing a Histone Fold and a PHD Finger. Molecular and Cellular Biology, 2001, 21, 5109-5121.	2.3	62
31	Matrilin-2, a Large, Oligomeric Matrix Protein, Is Expressed by a Great Variety of Cells and Forms Fibrillar Networks. Journal of Biological Chemistry, 1999, 274, 13353-13361.	3.4	79
32	Terminal differentiation of chondrocytes is arrested at distinct stages identified by their expression repertoire of marker genes. Matrix Biology. 1998. 17, 435-448.	3.6	42