
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/325907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating statistical approaches to define clonal origin of tumours using bulk DNA sequencing: context is everything. Genome Biology, 2022, 23, 43.	8.8	6
2	Validated biomarker assays confirm that <scp>ARID1A</scp> loss is confounded with <scp>MMR</scp> deficiency, <scp>CD8⁺ TIL</scp> infiltration, and provides no independent prognostic value in endometriosisâ€associated ovarian carcinomas. Journal of Pathology, 2022, 256, 388-401.	4.5	15
3	Molecular characterization of low-grade serous ovarian carcinoma identifies genomic aberrations according to hormone receptor expression. Npj Precision Oncology, 2022, 6, .	5.4	9
4	Primary mucinous ovarian neoplasms rarely show germ cell histogenesis. Histopathology, 2021, 78, 640-642.	2.9	6
5	Refined cut-off for TP53 immunohistochemistry improves prediction of TP53 mutation status in ovarian mucinous tumors: implications for outcome analyses. Modern Pathology, 2021, 34, 194-206.	5.5	21
6	Genomic analysis of lowâ€grade serous ovarian carcinoma to identify key drivers and therapeutic vulnerabilities. Journal of Pathology, 2021, 253, 41-54.	4.5	54
7	Loss of SMAD4 Is Sufficient to Promote Tumorigenesis in a Model of Dysplastic Barrett's Esophagus. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 689-713.	4.5	11
8	Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects. Npj Breast Cancer, 2021, 7, 52.	5.2	7
9	Investigation of monogenic causes of familial breast cancer: data from the BEACCON case-control study. Npj Breast Cancer, 2021, 7, 76.	5.2	12
10	Options for the Treatment of Mucinous Ovarian Carcinoma. Current Treatment Options in Oncology, 2021, 22, 114.	3.0	9
11	The Protein Landscape of Mucinous Ovarian Cancer: Towards a Theranostic. Cancers, 2021, 13, 5596.	3.7	6
12	Prognostic significance of cathepsin V (CTSV/CTSL2) in breast ductal carcinoma in situ. Journal of Clinical Pathology, 2020, 73, 76-82.	2.0	31
13	Therapeutic options for mucinous ovarian carcinoma. Gynecologic Oncology, 2020, 156, 552-560.	1.4	49
14	Molecular comparison of pure ovarian fibroma with serous benign ovarian tumours. BMC Research Notes, 2020, 13, 349.	1.4	8
15	The TP53 mutation rate differs in breast cancers that arise in women with high or low mammographic density. Npj Breast Cancer, 2020, 6, 34.	5.2	4
16	Germline whole exome sequencing of a family with appendiceal mucinous tumours presenting with pseudomyxoma peritonei. BMC Cancer, 2020, 20, 369.	2.6	5
17	The prognostic significance of immune microenvironment in breast ductal carcinoma in situ. British Journal of Cancer, 2020, 122, 1496-1506.	6.4	26
18	The genetic architecture of breast papillary lesions as a predictor of progression to carcinoma. Npj Breast Cancer. 2020. 6. 9.	5.2	19

2

#	Article	IF	CITATIONS
19	Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes. Nature Communications, 2020, 11, 1640.	12.8	24
20	The molecular origin and taxonomy of mucinous ovarian carcinoma. Nature Communications, 2019, 10, 3935.	12.8	110
21	A combination of the immunohistochemical markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases. Modern Pathology, 2019, 32, 1834-1846.	5.5	54
22	Collagen (XI) alpha-1 chain is an independent prognostic factor in breast ductal carcinoma in situ. Modern Pathology, 2019, 32, 1460-1472.	5.5	23
23	Geometric characteristics of collagen have independent prognostic significance in breast ductal carcinoma in situ: an image analysis study. Modern Pathology, 2019, 32, 1473-1485.	5.5	11
24	The clinical and biological significance of HER2 over-expression in breast ductal carcinoma in situ: a large study from a single institution. British Journal of Cancer, 2019, 120, 1075-1082.	6.4	27
25	Atypical ductal hyperplasia is a multipotent precursor of breast carcinoma. Journal of Pathology, 2019, 248, 326-338.	4.5	21
26	Combined Tumor Sequencing and Case-Control Analyses of RAD51C in Breast Cancer. Journal of the National Cancer Institute, 2019, 111, 1332-1338.	6.3	26
27	The prognostic significance of lysosomal protective protein (cathepsin A) in breast ductal carcinoma <i>inÂsitu</i> . Histopathology, 2019, 74, 1025-1035.	2.9	16
28	Molecular comparison of interval and screenâ€detected breast cancers. Journal of Pathology, 2019, 248, 243-252.	4.5	15
29	Legumain is an independent predictor for invasive recurrence in breast ductal carcinoma in situ. Modern Pathology, 2019, 32, 639-649.	5.5	19
30	Clinical and biological roles of Kelch-like family member 7 in breast cancer: a marker of poor prognosis. Breast Cancer Research and Treatment, 2018, 170, 525-533.	2.5	12
31	Molecular analysis of <i>PALB2</i> â€associated breast cancers. Journal of Pathology, 2018, 245, 53-60.	4.5	46
32	Evaluating the breast cancer predisposition role of rare variants in genes associated with low-penetrance breast cancer risk SNPs. Breast Cancer Research, 2018, 20, 3.	5.0	19
33	Functional and genomic characterization of a xenograft model system for the study of metastasis in triple-negative breast cancer. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	23
34	Invasion in breast lesions: the role of the epithelial–stroma barrier. Histopathology, 2018, 72, 1075-1083.	2.9	25
35	When Is "Type l―Ovarian Cancer Not "Type l� Indications of an Out-Dated Dichotomy. Frontiers in Oncology, 2018, 8, 654.	2.8	29
36	Prolyl-4-hydroxylase Î ^t subunit 2 (P4HA2) expression is a predictor of poor outcome in breast ductal carcinoma in situ (DCIS). British Journal of Cancer, 2018, 119, 1518-1526	6.4	32

#	Article	IF	CITATIONS
37	Mutations in RECQL are not associated with breast cancer risk in an Australian population. Nature Genetics, 2018, 50, 1346-1348.	21.4	19
38	Thioredoxin-interacting protein is an independent risk stratifier for breast ductal carcinoma in situ. Modern Pathology, 2018, 31, 1807-1815.	5.5	23
39	Atypical ductal hyperplasia: update on diagnosis, management, and molecular landscape. Breast Cancer Research, 2018, 20, 39.	5.0	38
40	Phenotypic characterisation of breast cancer: the role of CDC42. Breast Cancer Research and Treatment, 2017, 164, 317-325.	2.5	22
41	Relationship of the Breast Ductal Carcinoma <i>In Situ</i> Immune Microenvironment with Clinicopathological and Genetic Features. Clinical Cancer Research, 2017, 23, 5210-5217.	7.0	61
42	Chemokine (Câ€C motif) receptor 7 (CCR7) associates with the tumour immune microenvironment but not progression in invasive breast carcinoma. Journal of Pathology: Clinical Research, 2017, 3, 105-114.	3.0	9
43	Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer. Modern Pathology, 2017, 30, 952-963.	5.5	50
44	Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis. Frontiers in Oncology, 2017, 7, 248.	2.8	88
45	BRCA2 carriers with male breast cancer show elevated tumour methylation. BMC Cancer, 2017, 17, 641.	2.6	10
46	LRH-1 expression patterns in breast cancer tissues are associated with tumour aggressiveness. Oncotarget, 2017, 8, 83626-83636.	1.8	13
47	Reply to the Baader–Meinhof phenomenon in ductal carcinoma <i>in situ</i> of the breast. Histopathology, 2016, 69, 523-524.	2.9	1
48	Reevaluation of RINT1 as a breast cancer predisposition gene. Breast Cancer Research and Treatment, 2016, 159, 385-392.	2.5	16
49	Copy number analysis by low coverage whole genome sequencing using ultra low-input DNA from formalin-fixed paraffin embedded tumor tissue. Genome Medicine, 2016, 8, 121.	8.2	39
50	Ductal carcinoma <i>inÂsitu</i> – update on risk assessment and management. Histopathology, 2016, 68, 96-109.	2.9	38
51	Abstract B08: Genomics analyses of less common epithelial ovarian cancer subtypes , 2016, , .		0
52	Genomic Analysis. , 2016, , 83-106.		0
53	Appraisal of the technologies and review of the genomic landscape of ductal carcinoma in situ of the breast. Breast Cancer Research, 2015, 17, 80.	5.0	5
54	Reevaluation of the BRCA2 truncating allele c.9976A > T (p.Lys3326Ter) in a familial breast cancer context. Scientific Reports, 2015, 5, 14800.	3.3	26

#	Article	IF	CITATIONS
55	Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors. Genome Medicine, 2015, 7, 87.	8.2	126
56	Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes. Oncotarget, 2015, 6, 37663-37677.	1.8	142
57	Enhanced <i>GAB2</i> Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition. Molecular Cancer Therapeutics, 2015, 14, 1495-1503.	4.1	26
58	Loss of heterozygosity: what is it good for?. BMC Medical Genomics, 2015, 8, 45.	1.5	85
59	Prevalence of PALB2 mutations in Australian familial breast cancer cases and controls. Breast Cancer Research, 2015, 17, 111.	5.0	36
60	Copy number analysis of ductal carcinoma in situ with and without recurrence. Modern Pathology, 2015, 28, 1174-1184.	5.5	40
61	Genomic Aberrations of BRCA1-Mutated Fallopian Tube Carcinomas. American Journal of Pathology, 2014, 184, 1871-1876.	3.8	2
62	<i><scp>RNF43</scp></i> is a tumour suppressor gene mutated in mucinous tumours of the ovary. Journal of Pathology, 2013, 229, 469-476.	4.5	102
63	Functional Analysis of Genes in Regions Commonly Amplified in High-Grade Serous and Endometrioid Ovarian Cancer. Clinical Cancer Research, 2013, 19, 1411-1421.	7.0	52
64	Identifying Associations Between Genomic Alterations in Tumors. Methods in Molecular Biology, 2013, 1049, 9-19.	0.9	0
65	Abstract A3: Mucinous ovarian tumors: Are they all the same?. , 2013, , .		0
66	Abstract B22: Genomic and functional analysis of gene amplification in high-grade serous and endometrioid ovarian cancer. , 2013, , .		0
67	Abstract A13: Molecular profiling of low grade serous ovarian tumors. , 2013, , .		0
68	CONTRA: copy number analysis for targeted resequencing. Bioinformatics, 2012, 28, 1307-1313.	4.1	308
69	Pre-Invasive Ovarian Mucinous Tumors Are Characterized by <i>CDKN2A</i> and <i>RAS</i> Pathway Aberrations. Clinical Cancer Research, 2012, 18, 5267-5277.	7.0	57
70	Analysis of KLLN as a high-penetrance breast cancer predisposition gene. Breast Cancer Research and Treatment, 2012, 134, 543-547.	2.5	6
71	Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma. Breast Cancer Research and Treatment, 2012, 133, 889-898.	2.5	60
72	Benign serous ovarian tumour: a redefining moment?. Hereditary Cancer in Clinical Practice, 2012, 10, A83.	1.5	0

#	Article	IF	CITATIONS
73	An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. Journal of Clinical Investigation, 2012, 122, 553-557.	8.2	174
74	MicroRNA Genes and Their Target 3′-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers. PLoS ONE, 2012, 7, e35805.	2.5	27
75	Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer. BMC Cancer, 2011, 11, 173.	2.6	17
76	IL6-STAT3-HIF Signaling and Therapeutic Response to the Angiogenesis Inhibitor Sunitinib in Ovarian Clear Cell Cancer. Clinical Cancer Research, 2011, 17, 2538-2548.	7.0	217
77	Copy Number Aberrations in Benign Serous Ovarian Tumors: A Case for Reclassification?. Clinical Cancer Research, 2011, 17, 7273-7282.	7.0	23
78	Abstract LB-271: Benign ovarian serous tumors: A redefining moment. , 2011, , .		0
79	Identification of Candidate Growth Promoting Genes in Ovarian Cancer through Integrated Copy Number and Expression Analysis. PLoS ONE, 2010, 5, e9983.	2.5	95
80	Copy Number Analysis Identifies Novel Interactions Between Genomic Loci in Ovarian Cancer. PLoS ONE, 2010, 5, e11408.	2.5	83
81	Amplicon-Dependent CCNE1 Expression Is Critical for Clonogenic Survival after Cisplatin Treatment and Is Correlated with 20q11 Gain in Ovarian Cancer. PLoS ONE, 2010, 5, e15498.	2.5	92
82	Exploiting sequence similarity to validate the sensitivity of SNP arrays in detecting fine-scaled copy number variations. Bioinformatics, 2010, 26, 1007-1014.	4.1	1
83	Abstract LB-348: Identifying novel oncogenes in ovarian cancer using integrative genomics and gene-knock downs. , 2010, , .		0
84	Are there any more ovarian tumor suppressor genes? A new perspective using ultra highâ€resolution copy number and loss of heterozygosity analysis. Genes Chromosomes and Cancer, 2009, 48, 931-942.	2.8	56
85	Largeâ€scale genomic analysis of ovarian carcinomas. Molecular Oncology, 2009, 3, 157-164.	4.6	31
86	BARD1 variants are not associated with breast cancer risk in Australian familial breast cancer. Breast Cancer Research and Treatment, 2008, 111, 505-509.	2.5	23
87	Breast cancer risk and the BRCA1 interacting protein CTIP. Breast Cancer Research and Treatment, 2008, 112, 351-352.	2.5	3
88	Highâ€resolution copy number arrays in cancer and the problem of normal genome copy number variation. Genes Chromosomes and Cancer, 2008, 47, 933-938.	2.8	7
89	No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nature Genetics, 2008, 40, 650-655.	21.4	269
90	Mutation and Methylation Analysis of the Chromodomain-Helicase-DNA Binding 5 Gene in Ovarian Cancer. Neoplasia, 2008, 10, 1253-IN32.	5.3	66

#	Article	IF	CITATIONS
91	Genetic Analysis of Cancer-Implicated MicroRNA in Ovarian Cancer. Clinical Cancer Research, 2008, 14, 7246-7250.	7.0	29
92	High-Resolution Single Nucleotide Polymorphism Array Analysis of Epithelial Ovarian Cancer Reveals Numerous Microdeletions and Amplifications. Clinical Cancer Research, 2007, 13, 4731-4739.	7.0	154
93	Gender Differences in Publication Output: Towards an Unbiased Metric of Research Performance. PLoS ONE, 2006, 1, e127.	2.5	206
94	A molecular model for sporadic human aneuploidy. Trends in Genetics, 2006, 22, 218-224.	6.7	26
95	Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization. Genes Chromosomes and Cancer, 2005, 42, 247-259.	2.8	90
96	Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer. Carcinogenesis, 2005, 26, 923-930.	2.8	39
97	Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Research, 2003, 63, 2569-77.	0.9	172
98	Degenerate Oligonucleotide Primed-Polymerase Chain Reaction-Based Array Comparative Genomic Hybridization for Extensive Amplicon Profiling of Breast Cancers. American Journal of Pathology, 2001, 158, 1623-1631.	3.8	98
99	Molecular cytogenetic analysis of breast cancer cell lines. British Journal of Cancer, 2000, 83, 1309-1317.	6.4	91

100 Glucagonoma Masquerading as a Mucinous Cancer of the Ovary: Lessons from Cell Biology. , 0, , .