
Manuel GarcÃ-a Basallote

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3258794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C—H Bonds with Stereoretention. Journal of the American Chemical Society, 2015, 137, 15833-15842.	13.7	149
2	Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species. Angewandte Chemie - International Edition, 2016, 55, 6310-6314.	13.8	61
3	Hydrogen and Copper Ion-Induced Molecular Reorganizations in Scorpionand-like Ligands. A Potentiometric, Mechanistic, and Solid-State Study. Inorganic Chemistry, 2007, 46, 5707-5719.	4.0	51
4	Crucial Role of Anions on the Deprotonation of the Cationic Dihydrogen Complex trans-[FeH(η2-H2)(dppe)2]+. Journal of the American Chemical Society, 2007, 129, 6608-6618.	13.7	51
5	New Insights into the Mechanism of Proton Transfer to Hydride Complexes: Kinetic and Theoretical Evidence Showing the Existence of Competitive Pathways for Protonation of the Cluster [W3S4H3(dmpe)3]+ with Acids. Chemistry - A European Journal, 2006, 12, 1413-1426.	3.3	44
6	Acidâ€Triggered Oâ^'O Bond Heterolysis of a Nonheme Fe ^{III} (OOH) Species for the Stereospecific Hydroxylation of Strong Câ^'H Bonds. Chemistry - A European Journal, 2018, 24, 5331-5340.	3.3	43
7	Kinetics of formation of dihydrogen complexes: protonation of cis-[FeH2{P(CH2CH2PPh2)3} with acids in tetrahydrofuran â€. Journal of the Chemical Society Dalton Transactions, 1998, , 745-750.	1.1	41
8	Mechanism of the Reaction of the[W3S4H3(dmpe)3]+ Cluster with Acids: Evidence for the Acid-Promoted Substitution of Coordinated Hydrides and the Effect of the Attacking Species on the Kinetics of Protonation of the Metal-Hydride Bonds. Chemistry - A European Journal, 2004, 10, 1463-1471.	3.3	39
9	The Effect of the "Inert―Counteranions in the Deprotonation of the Dihydrogen Complextrans-[FeH(η2-H2)(dppe)2]+: Kinetic and Theoretical Studies. Journal of the American Chemical Society, 2004, 126, 2320-2321.	13.7	39
10	Synthesis, Crystal Structure, Aqueous Speciation, and Kinetics of Substitution Reactions in a Water-Soluble Mo ₃ S ₄ Cluster Bearing Hydroxymethyl Diphosphine Ligands. Inorganic Chemistry, 2007, 46, 7668-7677.	4.0	37
11	Chiral [Mo ₃ S ₄ H ₃ (diphosphine) ₃] ⁺ Hydrido Clusters and Study of the Effect of the Metal Atom on the Kinetics of the Acid-Assisted Substitution of the Coordinated Hydride: Mo vs W. Inorganic Chemistry, 2010, 49, 5935-5942.	4.0	37
12	New multidentate ligands. 29. Stabilities of metal complexes of the binucleating macrocyclic ligand BISBAMP and dioxygen affinity of its dinuclear cobalt(II) complex. Inorganic Chemistry, 1988, 27, 4219-4224.	4.0	36
13	Kinetics of protonation of cis-[FeH2(dppe)2]: formation of the dihydrogen complex trans-[FeH(H2)(dppe)2]+ (dppeâ€=â€Ph2PCH2CH2PPh2). Journal of the Chemical Society Dalton Transactions, 1998, , 2205-2210.	1.1	29
14	Molecular recognition of dipeptides. Catalysis of deuteration and hydrolysis of glycylglycine by dinuclear OBISDIEN Zn(II) complexes. Inorganica Chimica Acta, 1999, 287, 134-141.	2.4	28
15	Unexpected Mechanism for Substitution of Coordinated Dihydrogen intrans-[FeH(H2)(DPPE)2]+. Inorganic Chemistry, 1998, 37, 1623-1628.	4.0	27
16	Synthesis and structure of the incomplete cuboidal clusters [W3Se4H3(dmpe)3]+, [W3Se4H3â^'x(OH)x(dmpe)3]+and [W3Se4(OH)3(dmpe)3]+, and the mechanism of the acid-assisted substitution of the coordinated hydrides. Dalton Transactions, 2004, , 530-536.	3.3	27
17	Water-Soluble Mo ₃ S ₄ Clusters Bearing Hydroxypropyl Diphosphine Ligands: Synthesis, Crystal Structure, Aqueous Speciation, and Kinetics of Substitution Reactions. Inorganic Chemistry, 2012, 51, 6794-6802.	4.0	27
18	The Structure of ([W3Q4X3(dmpe)3]+, Y-) Ion Pairs (Q = S, Se; X = H, OH, Br; Y = BF4, PF6, dmpe =) Tj ETQq0 0 0	rgBT /Ove 4.0	erlock 10 Tf : 26

Proton Transfer to the Hydride Cluster [W3S4H3(dmpe)3]+. Inorganic Chemistry, 2006, 45, 5774-5784.

#	Article	IF	CITATIONS
19	Mechanisms of Reactions of Dihydrogen Complexes:Â Formation oftrans-[RuH(H2)(dppe)2]+and Substitution of Coordinated Dihydrogen. Inorganic Chemistry, 1999, 38, 5067-5071.	4.0	25
20	Synthesis, Reactivity, and Kinetics of Substitution in W ₃ PdSe ₄ Cuboidal Clusters. A Reexamination of the Kinetics of Substitution of the Related W ₃ S ₄ Cluster with Thiocyanate. Inorganic Chemistry, 2009, 48, 3639-3649.	4.0	24
21	Stability and kinetics of the acid-promoted decomposition of Cu(ii) complexes with hexaazacyclophanes: kinetic studies as a probe to detect changes in the coordination mode of the macrocycles. Dalton Transactions, 2004, , 94-103.	3.3	23
22	Kinetics of Formation of Dihydrogen Complexes by Protonation of CpRuHL Complexes (L = DPPM, DPPE,) Tj ETQq Other Acids. Organometallics, 2000, 19, 695-698.	0 0 0 rgB1 2.3	/Overlock 1 22
23	Hydrogen and Copper Ion Induced Molecular Reorganizations in Two New Scorpiand-Like Ligands Appended with Pyridine Rings. Inorganic Chemistry, 2010, 49, 7016-7027.	4.0	22
24	Catalytic Hydrogenation of Azobenzene in the Presence of a Cuboidal Mo ₃ S ₄ Cluster via an Uncommon Sulfur-Based H ₂ Activation Mechanism. ACS Catalysis, 2021, 11, 608-614.	11.2	22
25	Kinetics and mechanism of formation and decomposition of copper(II) complexes with a binucleating hexaazamacrocycle. Polyhedron, 1996, 15, 3511-3517.	2.2	21
26	Equilibrium studies and molecular recognition in the glycylglycine, dl-alanyl-dl-alanine and glycyl-l-leucine Cu(II)-1,4,7,13,16,19-hexaaza-10,22-dioxacyclotetracosane complexes. Inorganica Chimica Acta, 1997, 254, 345-351.	2.4	20
27	Statistically controlled kinetics for the formation and decomposition of binuclear complexes of Cull with a large octaaza cryptand â€. Journal of the Chemical Society Dalton Transactions, 1999, , 3817-3823.	1.1	20
28	Equilibrium studies on the protonation and Cu(II) complexation by an hexaaza macrocycle containing p-xylyl spacers. The crystal structure of the hexaprotonated ligand and the kinetics of decomposition of the Cu(II) complexes. Polyhedron, 2001, 20, 297-305.	2.2	20
29	Speciation-controlled incipient wetness impregnation: A rational synthetic approach to prepare sub-nanosized and highly active ceria–zirconia supported gold catalysts. Journal of Catalysis, 2014, 318, 119-127.	6.2	20
30	Kinetic studies on the reactions of macrocyclic complexes: formation of mono- and bi-nuclear copper(II) complexes with a binucleating hexaaza macrocycle in slightly acidic solutions â€. Journal of the Chemical Society Dalton Transactions, 1999, , 1093-1100.	1.1	19
31	Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species. Angewandte Chemie, 2016, 128, 6418-6422.	2.0	19
32	The kinetics and mechanisms of reactions involving the dihydrogen complex trans-[FeH(H2)(DPPE)2]+ and related compounds. Journal of Organometallic Chemistry, 2000, 609, 29-35.	1.8	18
33	A DFT and TDâ€DFT Approach to the Understanding of Statistical Kinetics in Substitution Reactions of M ₃ Q ₄ (M=Mo, W; Q=S, Se) Cuboidal Clusters. Chemistry - A European Journal, 2012, 18, 5036-5046.	3.3	18
34	Influence of the Ligand Alkyl Chain Length on the Solubility, Aqueous Speciation, and Kinetics of Substitution Reactions of Water-Soluble M3S4 (M = Mo, W) Clusters Bearing Hydroxyalkyl Diphosphines. Inorganic Chemistry, 2013, 52, 8713-8722.	4.0	18
35	Synthesis and Structure of Trinuclear W3S4 Clusters Bearing Aminophosphine Ligands and Their Reactivity toward Halides and Pseudohalides. Inorganic Chemistry, 2015, 54, 607-618.	4.0	18
36	Kinetic Analysis and Mechanism of the Hydrolytic Degradation of Squaramides and Squaramic Acids. Journal of Organic Chemistry, 2017, 82, 2160-2170.	3.2	18

#	Article	IF	CITATIONS
37	Kinetics of reaction of the Fell-cyclam complex with H2O2 in acetonitrile and the mechanism of catalyzed epoxidation of cyclohexene. Polyhedron, 1997, 16, 3827-3833. Thermodynamic and kinetic studies on the Cu2+ coordination chemistry of a novel binucleating	2.2	17
38	pyridinophane ligandElectronic supplementary information (ESI) available: Table S1: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with ligand L. Table S2: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with macrocycle L1. Fig. S1: Variation of some selected 13C chemical shifts as a function of pH. See	3.3	17
39	http://www.rsc.org/suppdata/dt/b2/b209013a/. Dalton Transactions, 2003, , 1186-1193. Synthesis of the Novel [W3PdS4H3(dmpe)3(CO)]+Cubane Cluster and Kinetic Studies on the Substitution of Coordinated Hydrides in Acidic Media. Inorganic Chemistry, 2006, 45, 5576-5584.	4.0	17
40	Copper(ii) complexes of quinoline polyazamacrocyclic scorpiand-type ligands: X-ray, equilibrium and kinetic studies. Dalton Transactions, 2012, 41, 5617.	3.3	17
41	Stability and kinetics of decomposition of binuclear Cu(II) complexes with a symmetrical hexaaza macrocycle: the effect of SCNâ~ as ancillary ligand. Polyhedron, 2001, 20, 75-82.	2.2	16
42	Unprecedented Solventâ€Assisted Reactivity of Hydrido W ₃ CuS ₄ Cubane Clusters: The Nonâ€Innocent Behaviour of the Clusterâ€Core Unit. Chemistry - A European Journal, 2009, 15, 4582-4594.	3.3	16
43	Geometric Isomerism in Pentacoordinate Cu2+ Complexes: Equilibrium, Kinetic, and Density Functional Theory Studies Reveal the Existence of Equilibrium between Square Pyramidal and Trigonal Bipyramidal Forms for a Tren-Derived Ligand. Inorganic Chemistry, 2009, 48, 902-914.	4.0	16
44	Mechanistic aspects of the chemistry of mononuclear CrIII complexes with pendant-arm macrocyclic ligands and formation of discrete CrIII/FeII and CrIII/FeII/CoIII cyano-bridged mixed valence compounds. Dalton Transactions, 2009, , 9567.	3.3	16
45	Coordination Chemistry of Cu ²⁺ Complexes of Small N-Alkylated Tetra-azacyclophanes with SOD Activity. Inorganic Chemistry, 2018, 57, 10961-10973.	4.0	16
46	Kinetics and mechanism of the decomposition of cobalt dioxygen complexes of the binucleating macrocyclic ligand BISBAMP [3,9,17,23,29,30-hexaaza-6,20-dioxatricyclo[23.3.1.111,15]triaconta-1(28),11,13,15(30),25(29),26-hexaene]. Inorganic Chemistry, 1989, 28, 3494-3499.	4.0	15
47	Structurally Different Dinuclear Copper(II) Complexes with the Same Triazolopyrimidine Bridging Ligand. European Journal of Inorganic Chemistry, 2002, 2002, 811-818.	2.0	15
48	Exploring the Properties and Optical Sensing Capability of Solâ^'Gel Materials Containing a Covalently Bonded Binucleating Cryptand. Chemistry of Materials, 2003, 15, 2025-2032.	6.7	15
49	Hydrogen-ion driven molecular motions in Cu2+-complexes of a ditopic phenanthrolinophane ligand. Chemical Communications, 2003, , 3032-3033.	4.1	15
50	The Role of Solvent on the Mechanism of Proton Transfer to Hydride Complexes: The Case of the [W ₃ PdS ₄ H ₃ (dmpe) ₃ (CO)] ⁺ Cubane Cluster. Chemistry - A European Journal, 2010, 16, 1613-1623.	3.3	15
51	Synthesis and X-ray structural study of a novel ruthenium(III)–ethylenediaminetetraacetate complex. The first compound showing an unusual coordination site for a carboxylic (glycine) group. Journal of the Chemical Society Chemical Communications, 1991, , 100-101.	2.0	14
52	An unexpected molybdenum(0) complex with "MoP6―coordination: crystal structure of [Mo{P(CH2CH2PPh2)3}2] · C5H10. Journal of Organometallic Chemistry, 1991, 420, 371-377.	1.8	14
53	Synthesis, equilibrium studies and structural characterisation of the Zn(II) complexes with trimethylene-N6,N6′-bisadenine. Journal of Inorganic Biochemistry, 2003, 93, 141-151.	3.5	14
54	Cycloaddition of alkynes to diimino Mo ₃ S ₄ cubane-type clusters: a combined experimental and theoretical approach. New Journal of Chemistry, 2016, 40, 7872-7880.	2.8	14

#	Article	IF	CITATIONS
55	Sol–gel materials with trapped trinuclear class-II mixed-valence macrocyclic complexes that mimic their solution redox behaviour. New Journal of Chemistry, 2008, 32, 264-272.	2.8	13
56	Kinetics Aspects of the Reversible Assembly of Copper in Heterometallic Mo ₃ CuS ₄ Clusters with 4,4′-Di- <i>tert</i> -butyl-2,2′-bipyridine. Inorganic Chemistry, 2016, 55, 9912-9922.	4.0	13
57	Displacement of tetrahydrofuran ligands by tripodal phosphines. Crystal structure of [MoCl3{N(CH2CH2PPh2)3}]·C4H8O. Journal of the Chemical Society Dalton Transactions, 1991, , 3149-3151.	1.1	12
58	Stability and kinetics of the acid-promoted decomposition of tertiary binuclear Cull2LXz+ complexes (L) Tj ETQqC dissociation of the cryptand. Dalton Transactions RSC, 2002, , 2074.	0 0 rgBT / 2.3	Overlock 10 12
59	Synthesis and Cu(II) coordination of two new hexaamines containing alternated propylenic and ethylenic chains: Kinetic studies on pH-driven metal ion slippage movements. Inorganica Chimica Acta, 2006, 359, 2004-2014.	2.4	12
60	Site specific ligand substitution in cubane-type Mo3FeS44+ clusters: Kinetics and mechanism of reaction and isolation of mixed ligand Cl/SPh complexes. Dalton Transactions, 2010, 39, 3725.	3.3	12
61	Equilibrium and kinetic studies on complex formation and decomposition and the movement of Cu2+metal ions within polytopic receptors. Dalton Transactions, 2013, 42, 6131.	3.3	12
62	Mechanism of [3+2] Cycloaddition of Alkynes to the [Mo ₃ S ₄ (acac) ₃ (py) ₃][PF ₆] Cluster. Chemistry - A European Journal, 2015, 21, 2835-2844.	3.3	12
63	Cuboidal Mo ₃ S ₄ Clusters as a Platform for Exploring Catalysis: A Three-Center Sulfur Mechanism for Alkyne Semihydrogenation. ACS Catalysis, 2018, 8, 7346-7350.	11.2	12
64	A combined stopped-flow, electrospray ionization mass spectrometry and31P NMR study on the acetic acid-mediated fragmentation of the hydroxo-chalcogenide cluster [W3Se4(OH)3(dmpe)3]+(dmpe =) Tj ETQq0 0	0 rgBT /O\	verlock 10 Tf 11
65	Dalton Transactions, 2006, , 5725-5733. Synthesis, Protonation and Cu ^{II} Complexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies. European Journal of Inorganic Chemistry, 2009, 2009, 62-75.	2.0	11
66	Chemistry of cobalt complexes with 1,2-bis-(diethylphosphino)ethane: hydrides, carbon disulfide complexes, and C–H cleavage in activated alk-1-ynes. Crystal structure of [CoH(CCCO2Et)(Et2PCH2CH2PEt2)2][BPh4]. Journal of the Chemical Society Dalton Transactions, 1993, , 1841-1847.	1,1	10
67	Catalytic effect of a second H3PO2in the mechanism of stabilisation of the unstable pyramidal tautomer of H3PO2coordinated at [Mo3S4M′] clusters (M′ = Ni, Pd). Chemical Communications, 2007, , 3071-3073.	4.1	10
68	Kinetic and DFT Studies on the Mechanism of C–S Bond Formation by Alkyne Addition to the [Mo ₃ S ₄ (H ₂ O) ₉] ⁴⁺ Cluster. Inorganic Chemistry, 2013, 52, 14334-14342.	4.0	10
69	Steady-state isotopic transient kinetic analysis of the H2/D2 exchange reaction as a tool for characterising the metal phase in supported platinum catalysts. Applied Catalysis A: General, 2002, 232, 39-50.	4.3	9
70	Equilibrium, Kinetic, and Computational Studies on the Formation of Cu ²⁺ and Zn ²⁺ Complexes with an Indazole-Containing Azamacrocyclic Scorpiand: Evidence for Metal-Induced Tautomerism. Inorganic Chemistry, 2015, 54, 1983-1991.	4.0	9
71	Pitfalls in the ABTS Peroxidase Activity Test: Interference of Photochemical Processes. Inorganic Chemistry, 2018, 57, 14471-14475.	4.0	9
72	Striking medium effects on the kinetics of decomposition of macrocyclic Cu2+ complexes: Additional considerations to be taken when designing Copper-64 radiopharmaceuticals. Inorganic Chemistry Communication, 2010, 13, 1272-1274.	3.9	8

#	Article	IF	CITATIONS
73	Structural reorganisation in polytopic receptors revealed by kinetic studies. Chemical Communications, 2010, 46, 6081.	4.1	8
74	On the Critical Effect of the Metal (Mo vs. W) on the [3+2] Cycloaddition Reaction of M ₃ S ₄ Clusters with Alkynes: Insights from Experiment and Theory. Chemistry - A European Journal, 2015, 21, 14823-14833.	3.3	8
75	Salen‑manganese complexes for controlling ROS damage: Neuroprotective effects, antioxidant activity and kinetic studies. Journal of Inorganic Biochemistry, 2020, 203, 110918.	3.5	8
76	Dinitrogen and related compounds of molybdenum with the tripodal phosphines N(CH2CH2PPh2)3or P(CH2CH2PPh2)3as coligands. Journal of the Chemical Society Dalton Transactions, 1993, , 923-926.	1.1	7
77	Fell complexes with tripod phosphines, Ph2PCH2CH2PPh2 and NEt3: Stability and kinetics of formation. Polyhedron, 1995, 14, 1865-1871.	2.2	7
78	Kinetics and mechanism of substitution reactions in cis-[RuCl(L)(dppe)2]+ complexes (Lâ€=â€RCN,) Tj ETQqC	0 0 0 rgBT 1.1 rgBT	/Qyerlock 10
79	Reversible Binuclear Cu(II) Complex Formation in a New Sonogelâ^ Cryptand Hybrid Material. Chemistry of Materials, 2002, 14, 670-676.	6.7	7
80	Equilibrium and kinetic studies on the formation of mono- and bi-nuclear Niiicomplexes with a binucleating hexaaza macrocycle. Dalton Transactions RSC, 2002, , 3691-3695.	2.3	7
81	Ag(i) complexes with alkylidene-bis(2-aminopyrimidines) as building units for discrete metallomacrocyclic frames. A structural and solution study. Dalton Transactions, 2005, , 3763.	3.3	7

82	Correlation between the molecular structure and the kinetics of decomposition of azamacrocyclic copper(<scp>ii</scp>) complexes. Dalton Transactions, 2015, 44, 8255-8266.	3.3	7
83	Thermal decomposition of palladium complexes with propylenediaminetetraacetic acid. Thermochimica Acta, 1982, 58, 317-324.	2.7	6
84	Equilibrium and Kinetic Properties of Cu ^{II} Cyclophane Complexes: The Effect of Changes in the Macrocyclic Cavity Caused by Changes in the Substitution at the Aromatic Ring. European Journal of Inorganic Chemistry, 2008, 2008, 1497-1507.	2.0	6
85	The role of hydroxo-bridged dinuclear species and the influence of "innocent―buffers in the reactivity of cis-[CollI(cyclen)(H2O)2]3+ and [CollI(tren)(H2O)2]3+ complexes with biologically relevant ligands at physiological pH. Dalton Transactions, 2014, 43, 11048.	3.3	6
86	Pb2+ complexes of small-cavity azamacrocyclic ligands: thermodynamic and kinetic studies. Dalton Transactions, 2017, 46, 6645-6653.	3.3	6
87	Mechanism of the decomposition reaction of trans-[Mo(N2)2(PPh2Me)4] and of its reaction with pyridine. Journal of the Chemical Society Dalton Transactions, 1992, , 1291-1295.	1.1	5
88	Combined kinetic and DFT studies on the stabilization of the pyramidal form of H3PO2 at the heterometal site of [Mo3M′S4(H2O)10]4+ clusters (M′ = Pd, Ni). Dalton Transactions, 2009, , 1579.	3.3	5
89	Dihydrogen complexes: striking effect of ion pairing to BF4â^' on the rotation of coordinated dihydrogen and the 19F relaxation time. Chemical Communications, 2009, , 4563.	4.1	5
	The Solution Chemistry of Cu2+ tren Complexes Devisited Euplering the Dele of Species That Are Not		

90The Solution Chemistry of Cu2+-tren Complexes Revisited: Exploring the Role of Species That Are Not
Trigonal Bipyramidal. European Journal of Inorganic Chemistry, 2012, 2012, 2514-2526.2.05

#	Article	IF	CITATIONS
91	Solvent and incoming ligand effects on the mechanism of substitution reactions of trans-[FeH(L)(DPPE)2]+ (Lâ€=â€H2) †the Chemical Society Dalton Transactions, 1999, , 3379-3383.	E. Jou rnal c	of4
92	Iron(II) Complexes with Scorpiand-Like Macrocyclic Polyamines: Kinetico-Mechanistic Aspects of Complex Formation and Oxidative Dehydrogenation of Coordinated Amines. Inorganic Chemistry, 2017, 56, 4400-4412.	4.0	4
93	Computational Insights Into the Reactivity at the Sulfur Atoms of M 3 S 4 (M = Mo, W) Clusters: The Mechanism of [3 + 2] Cycloaddition With Alkynes. Advances in Inorganic Chemistry, 2017, 70, 311-342.	1.0	4
94	Methylation as an effective way to generate SOD-activity in copper complexes of scorpiand-like azamacrocyclic receptors. Inorganica Chimica Acta, 2018, 472, 139-148.	2.4	4
95	Proton-assisted air oxidation mechanisms of iron(ii) bis-thiosemicarbazone complexes at physiological pH: a kinetico-mechanistic study. Dalton Transactions, 2019, 48, 16578-16587.	3.3	4
96	Kinetics of substitution reactions of trans-[Mo(N2)2(PPh2Me)4] with tripodal phosphines. Journal of the Chemical Society Dalton Transactions, 1994, , 1717-1722.	1.1	3
97	Kinetics of substitution reactions of Fell-phosphine complexes with Clâ^', Brâ^' and SCNâ^' in acetonitrile. A comparative study of complexes containing bidentate and tripodal phosphines. Polyhedron, 1996, 15, 2305-2310.	2.2	3
98	Kinetic, DFT and TD-DFT studies on the mechanism of stabilization of pyramidal H3PO3 at the [Mo3M′S4(H2O)10]4+ clusters (M′ = Pd, Ni). Dalton Transactions, 2011, 40, 8589.	3.3	3
99	Equilibrium and kinetics studies on bibrachial lariat aza-crown/Cu(II) systems reveal different behavior associated with small changes in the structure. Inorganica Chimica Acta, 2014, 417, 246-257.	2.4	3
100	Benchmarking of <scp>DFT</scp> methods using experimental free energies and volumes of activation for the cycloaddition of alkynes to cuboidal <scp>Mo₃S₄</scp> clusters. International Journal of Quantum Chemistry, 2020, 120, e26353.	2.0	3
101	Palladium and platinum guanine complexes. Transition Metal Chemistry, 1986, 11, 232-235.	1.4	2
102	1H and 13C NMR spectra of Pd(II) and Pt(II) aminopolycarboxylates. Polyhedron, 1987, 6, 571-576.	2.2	2
103	Synthesis and kinetic study of palladium and platinum complexes with aminopolycarboxylate ligands. Polyhedron, 1994, 13, 1853-1858.	2.2	2
104	Hydroxylated phosphines as ligands for chalcogenide clusters: self assembly, transformations and stabilization. Pure and Applied Chemistry, 2017, 89, 379-392.	1.9	2
105	Studies on the Reactivity of the [W ₃ S ₄ Br ₃ (edpp) ₃] ⁺ [edpp = (2â€∎minoethyl)diphenylphosphine] Cluster Cation towards Bases: The Active Role of the Amino Group. European lournal of Inorganic Chemistry, 2017, 2017, 5006-5014.	2.0	2
106	Spin State Tunes Oxygen Atom Transfer towards Fe IV O Formation in Fe II Complexes. Chemistry - A European Journal, 2021, 27, 4946-4954.	3.3	1
107	Bifunctional W/NH cuboidal aminophosphino W3S4 cluster hydrides: the puzzling behaviour behind the hydridicâ€protonic interplay. European Journal of Inorganic Chemistry, 0, , .	2.0	0