Joshua A Jackman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3257794/publications.pdf

Version: 2024-02-01

66343 102487 5,575 149 42 66 citations h-index g-index papers 153 153 153 6490 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today, 2015, 10, 213-239.	11.9	356
2	Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. International Journal of Molecular Sciences, 2018, 19, 1114.	4.1	325
3	Nanoplasmonic sensors for biointerfacial science. Chemical Society Reviews, 2017, 46, 3615-3660.	38.1	195
4	High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Science Advances, 2016, 2, e1501381.	10.3	191
5	High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy, 2017, 36, 38-45.	16.0	160
6	Flexible, Grapheneâ€Coated Biocomposite for Highly Sensitive, Realâ€Time Molecular Detection. Advanced Functional Materials, 2016, 26, 8623-8630.	14.9	116
7	Biotechnology Applications of Tethered Lipid Bilayer Membranes. Materials, 2012, 5, 2637-2657.	2.9	101
8	Supported Lipid Bilayer Formation: Beyond Vesicle Fusion. Langmuir, 2020, 36, 1387-1400.	3.5	94
9	Bioinspired Spiky Micromotors Based on Sporopollenin Exine Capsules. Advanced Functional Materials, 2017, 27, 1702338.	14.9	92
10	Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides. Molecules, 2016, 21, 305.	3.8	88
11	Nanoplasmonic sensors for detecting circulating cancer biomarkers. Advanced Drug Delivery Reviews, 2018, 125, 48-77.	13.7	88
12	pH-Driven Assembly of Various Supported Lipid Platforms: A Comparative Study on Silicon Oxide and Titanium Oxide. Langmuir, 2011, 27, 3739-3748.	3.5	83
13	Influence of Osmotic Pressure on Adhesion of Lipid Vesicles to Solid Supports. Langmuir, 2013, 29, 11375-11384.	3.5	81
14	Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. Journal of Animal Science and Biotechnology, 2020, 11, 44.	5. 3	81
15	Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants. Langmuir, 2015, 31, 10223-10232.	3.5	80
16	Temperature-Induced Denaturation of BSA Protein Molecules for Improved Surface Passivation Coatings. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32047-32057.	8.0	77
17	A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. Journal of Materials Chemistry B, 2017, 5, 4019-4024.	5.8	76
18	Grapheneâ€Functionalized Natural Microcapsules: Modular Building Blocks for Ultrahigh Sensitivity Bioelectronic Platforms. Advanced Functional Materials, 2016, 26, 2097-2103.	14.9	75

#	Article	IF	CITATIONS
19	Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anionâ´Ï€ Interactions. Journal of the American Chemical Society, 2017, 139, 7823-7830.	13.7	75
20	Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nature Materials, 2018, 17, 971-977.	27.5	74
21	Solvent-assisted preparation of supported lipid bilayers. Nature Protocols, 2019, 14, 2091-2118.	12.0	70
22	Self-Assembly Formation of Lipid Bilayer Coatings on Bare Aluminum Oxide: Overcoming the Force of Interfacial Water. ACS Applied Materials & Samp; Interfaces, 2015, 7, 959-968.	8.0	68
23	Solvent-Assisted Lipid Self-Assembly at Hydrophilic Surfaces: Factors Influencing the Formation of Supported Membranes. Langmuir, 2015, 31, 3125-3134.	3.5	66
24	Plasmonic Nanohole Sensor for Capturing Single Virusâ€Like Particles toward Virucidal Drug Evaluation. Small, 2016, 12, 1159-1166.	10.0	57
25	Rupture of Lipid Vesicles by a Broad-Spectrum Antiviral Peptide: Influence of Vesicle Size. Journal of Physical Chemistry B, 2013, 117, 16117-16128.	2.6	56
26	Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles. Langmuir, 2016, 32, 6486-6495.	3.5	56
27	Comparison of complement activation-related pseudoallergy in miniature and domestic pigs: foundation of a validatable immune toxicity model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 933-943.	3.3	55
28	Nanoplasmonic Biosensing for Soft Matter Adsorption: Kinetics of Lipid Vesicle Attachment and Shape Deformation. Langmuir, 2014, 30, 9494-9503.	3.5	54
29	Formation of Cholesterol-Rich Supported Membranes Using Solvent-Assisted Lipid Self-Assembly. Langmuir, 2014, 30, 13345-13352.	3.5	53
30	Contribution of the Hydration Force to Vesicle Adhesion on Titanium Oxide. Langmuir, 2014, 30, 5368-5372.	3.5	52
31	Nanomedicine for Infectious Disease Applications: Innovation towards Broadâ€Spectrum Treatment of Viral Infections. Small, 2016, 12, 1133-1139.	10.0	52
32	Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures. Langmuir, 2017, 33, 5052-5064.	3.5	52
33	Quantitative Profiling of Nanoscale Liposome Deformation by a Localized Surface Plasmon Resonance Sensor. Analytical Chemistry, 2017, 89, 1102-1109.	6.5	52
34	Stealth Immune Properties of Graphene Oxide Enabled by Surface-Bound Complement Factor H. ACS Nano, 2016, 10, 10161-10172.	14.6	49
35	Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking. Physical Chemistry Chemical Physics, 2017, 19, 8854-8865.	2.8	49
36	Interfacial Forces Dictate the Pathway of Phospholipid Vesicle Adsorption onto Silicon Dioxide Surfaces. Langmuir, 2018, 34, 1775-1782.	3 . 5	49

#	Article	IF	CITATIONS
37	Vesicle Adhesion and Rupture on Silicon Oxide: Influence of Freeze–Thaw Pretreatment. Langmuir, 2014, 30, 2152-2160.	3.5	47
38	Correlating Membrane Morphological Responses with Micellar Aggregation Behavior of Capric Acid and Monocaprin. Langmuir, 2017, 33, 2750-2759.	3.5	47
39	Inhibition of African swine fever virus in liquid and feed by medium-chain fatty acids and glycerol monolaurate. Journal of Animal Science and Biotechnology, 2020, 11, 114.	5.3	47
40	Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis. Analytical Chemistry, 2016, 88, 12524-12531.	6.5	46
41	Nanoplasmonic ruler to measure lipid vesicle deformation. Chemical Communications, 2016, 52, 76-79.	4.1	46
42	Stopping Membrane-Enveloped Viruses with Nanotechnology Strategies: Toward Antiviral Drug Development and Pandemic Preparedness. ACS Nano, 2021, 15, 125-148.	14.6	46
43	Contribution of Temperature to Deformation of Adsorbed Vesicles Studied by Nanoplasmonic Biosensing. Langmuir, 2015, 31, 771-781.	3.5	44
44	Multifunctional hydrogel nano-probes for atomic force microscopy. Nature Communications, 2016, 7, 11566.	12.8	44
45	Conformational flexibility of fatty acid-free bovine serum albumin proteins enables superior antifouling coatings. Communications Materials, 2020, 1, .	6.9	44
46	Nanotechnology Education for the Global World: Training the Leaders of Tomorrow. ACS Nano, 2016, 10, 5595-5599.	14.6	43
47	Controlling Lipid Membrane Architecture for Tunable Nanoplasmonic Biosensing. Small, 2014, 10, 4828-4832.	10.0	42
48	Deciphering How Pore Formation Causes Strain-Induced Membrane Lysis of Lipid Vesicles. Journal of the American Chemical Society, 2016, 138, 1406-1413.	13.7	40
49	Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chemistry - an Asian Journal, 2018, 13, 3366-3377.	3.3	40
50	Surface-Based Nanoplasmonic Sensors for Biointerfacial Science Applications. Bulletin of the Chemical Society of Japan, 2019, 92, 1404-1412.	3.2	40
51	Model Membrane Platforms for Biomedicine: Case Study on Antiviral Drug Development. Biointerphases, 2012, 7, 18.	1.6	39
52	Cloaking Silica Nanoparticles with Functional Protein Coatings for Reduced Complement Activation and Cellular Uptake. ACS Nano, 2020, 14, 11950-11961.	14.6	39
53	Indirect Nanoplasmonic Sensing Platform for Monitoring Temperature-Dependent Protein Adsorption. Analytical Chemistry, 2017, 89, 12976-12983.	6.5	36
54	Complement activation in vitro and reactogenicity of low-molecular weight dextran-coated SPIONs in the pig CARPA model: Correlation with physicochemical features and clinical information. Journal of Controlled Release, 2018, 270, 268-274.	9.9	36

#	Article	IF	CITATIONS
55	Lipid Nanoparticle Technologies for Nucleic Acid Delivery: A Nanoarchitectonics Perspective. Advanced Functional Materials, 2022, 32, .	14.9	36
56	Interfacial Binding Dynamics of Bee Venom Phospholipase A ₂ Investigated by Dynamic Light Scattering and Quartz Crystal Microbalance. Langmuir, 2010, 26, 4103-4112.	3.5	33
57	AH Peptide-Mediated Formation of Charged Planar Lipid Bilayers. Journal of Physical Chemistry B, 2014, 118, 3616-3621.	2.6	33
58	Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability. Colloids and Surfaces B: Biointerfaces, 2011, 82, 550-561.	5.0	32
59	Investigating how vesicle size influences vesicle adsorption on titanium oxide: a competition between steric packing and shape deformation. Physical Chemistry Chemical Physics, 2017, 19, 2131-2139.	2.8	31
60	Chemical design principles of next-generation antiviral surface coatings. Chemical Society Reviews, 2021, 50, 9741-9765.	38.1	31
61	Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay Establishes Design Guidelines for Antiviral Peptides. Small, 2015, 11, 2372-2379.	10.0	30
62	Understanding How Sterols Regulate Membrane Remodeling in Supported Lipid Bilayers. Langmuir, 2017, 33, 14756-14765.	3.5	30
63	Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Theranostics, 2021, 11, 958-973.	10.0	29
64	A Numerical Study on the Effect of Particle Surface Coverage on the Quartz Crystal Microbalance Response. Analytical Chemistry, 2018, 90, 2238-2245.	6.5	28
65	Addressing the digital skills gap for future education. Nature Human Behaviour, 2021, 5, 542-545.	12.0	28
66	Colloidâ€Mediated Fabrication of a 3D Pollen Sponge for Oil Remediation Applications. Advanced Functional Materials, 2021, 31, 2101091.	14.9	28
67	Observation of Stripe Superstructure in the β-Two-Phase Coexistence Region of Cholesterol–Phospholipid Mixtures in Supported Membranes. Journal of the American Chemical Society, 2014, 136, 16962-16965.	13.7	27
68	Characterizing How Acidic pH Conditions Affect the Membrane-Disruptive Activities of Lauric Acid and Glycerol Monolaurate. Langmuir, 2018, 34, 13745-13753.	3.5	27
69	In-depth characterization of congenital Zika syndrome in immunocompetent mice: Antibody-dependent enhancement and an antiviral peptide therapy. EBioMedicine, 2019, 44, 516-529.	6.1	27
70	A model derived from hydrodynamic simulations for extracting the size of spherical particles from the quartz crystal microbalance. Analyst, The, 2017, 142, 3370-3379.	3.5	26
71	Quartz Crystal Microbalance Model for Quantitatively Probing the Deformation of Adsorbed Particles at Low Surface Coverage. Analytical Chemistry, 2017, 89, 11711-11718.	6.5	26
72	Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen. Scientific Reports, 2016, 6, 28017.	3.3	25

#	Article	IF	CITATIONS
73	Comparing the Membrane-Interaction Profiles of Two Antiviral Peptides: Insights into Structure–Function Relationship. Langmuir, 2019, 35, 9934-9943.	3.5	25
74	Influence of NaCl Concentration on Bicelle-Mediated SLB Formation. Langmuir, 2019, 35, 10658-10666.	3 . 5	25
75	Biomimetic Nanomaterial Strategies for Virus Targeting: Antiviral Therapies and Vaccines. Advanced Functional Materials, 2021, 31, 2008352.	14.9	25
76	Targeting the Achilles Heel of Mosquito-Borne Viruses for Antiviral Therapy. ACS Infectious Diseases, 2019, 5, 4-8.	3.8	24
77	Probing Spatial Proximity of Supported Lipid Bilayers to Silica Surfaces by Localized Surface Plasmon Resonance Sensing. Analytical Chemistry, 2017, 89, 4301-4308.	6.5	22
78	Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling. Journal of Physical Chemistry Letters, 2020, 11, 4951-4957.	4.6	22
79	Flavonoid Library Screening Reveals Kaempferol as a Potential Antiviral Agent Against African Swine Fever Virus. Frontiers in Microbiology, 2021, 12, 736780.	3.5	22
80	Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic Peptide. Biophysical Journal, 2016, 110, 176-187.	0.5	20
81	Lightâ€Induced Surface Modification of Natural Plant Microparticles: Toward Colloidal Science and Cellular Adhesion Applications. Advanced Functional Materials, 2018, 28, 1707568.	14.9	20
82	Relationship between vesicle size and steric hindrance influences vesicle rupture on solid supports. Physical Chemistry Chemical Physics, 2016, 18, 3065-3072.	2.8	19
83	Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays. Sensors, 2018, 18, 1283.	3.8	19
84	Scalable Fabrication of Quasi-One-Dimensional Gold Nanoribbons for Plasmonic Sensing. Nano Letters, 2020, 20, 1747-1754.	9.1	19
85	Supported Lipid Bilayer Platform To Test Inhibitors of the Membrane Attack Complex: Insights into Biomacromolecular Assembly and Regulation. Biomacromolecules, 2015, 16, 3594-3602.	5.4	18
86	Understanding How Membrane Surface Charge Influences Lipid Bicelle Adsorption onto Oxide Surfaces. Langmuir, 2019, 35, 8436-8444.	3.5	18
87	Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. International Journal of Molecular Sciences, 2021, 22, 9664.	4.1	18
88	Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications. Chemical Record, 2019, 19, 1891-1912.	5.8	17
89	Understanding how natural sequence variation in serum albumin proteins affects conformational stability and protein adsorption. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111194.	5.0	17
90	Entrepreneurial Talent Building for 21st Century Agricultural Innovation. ACS Nano, 2021, 15, 10748-10758.	14.6	17

#	Article	IF	Citations
91	Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays. Sensors, 2017, 17, 1484.	3.8	16
92	Nanoplasmonic Ruler for Measuring Separation Distance between Supported Lipid Bilayers and Oxide Surfaces. Analytical Chemistry, 2018, 90, 12503-12511.	6.5	16
93	Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent Biomacromolecular Interactions. Analytical Chemistry, 2018, 90, 7458-7466.	6.5	16
94	Biomembrane Fabrication by the Solvent-assisted Lipid Bilayer (SALB) Method. Journal of Visualized Experiments, 2015, , .	0.3	15
95	Lipid-Bicelle-Coated Microfluidics for Intracellular Delivery with Reduced Fouling. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45744-45752.	8.0	15
96	Lipid coating technology: A potential solution to address the problem of sticky containers and vanishing drugs. View, 2022, 3, 20200078.	5.3	15
97	Cyclodextrin-based Pickering emulsions: functional properties and drug delivery applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 101, 31-50.	1.6	15
98	Quantitative Evaluation of Peptide–Material Interactions by a Force Mapping Method: Guidelines for Surface Modification. Langmuir, 2015, 31, 8006-8012.	3.5	14
99	Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials. Physical Chemistry Chemical Physics, 2016, 18, 14454-14459.	2.8	14
100	Influence of membrane surface charge on adsorption of complement proteins onto supported lipid bilayers. Colloids and Surfaces B: Biointerfaces, 2016, 148, 270-277.	5.0	14
101	Characterizing the Membrane-Disruptive Behavior of Dodecylglycerol Using Supported Lipid Bilayers. Langmuir, 2019, 35, 3568-3575.	3.5	14
102	Unraveling How Ethanol-Induced Conformational Changes Affect BSA Protein Adsorption onto Silica Surfaces. Langmuir, 2020, 36, 9215-9224.	3.5	14
103	Supported Lipid Bilayer Formation from Phospholipid-Fatty Acid Bicellar Mixtures. Langmuir, 2020, 36, 5021-5029.	3.5	14
104	Comparing Protein Adsorption onto Alumina and Silica Nanomaterial Surfaces: Clues for Vaccine Adjuvant Development. Langmuir, 2021, 37, 1306-1314.	3.5	14
105	Elucidating How Different Amphipathic Stabilizers Affect BSA Protein Conformational Properties and Adsorption Behavior. Langmuir, 2020, 36, 10606-10614.	3.5	13
106	pH-Dependent Antibacterial Activity of Glycolic Acid: Implications for Anti-Acne Formulations. Scientific Reports, 2020, 10, 7491.	3.3	13
107	Lipid Bicelle Micropatterning Using Chemical Lift-Off Lithography. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13447-13455.	8.0	13
108	Real-time nanoplasmonic sensing of three-dimensional morphological changes in a supported lipid bilayer and antimicrobial testing applications. Biosensors and Bioelectronics, 2021, 174, 112768.	10.1	13

#	Article	IF	CITATIONS
109	Supported lipid bilayer coatings: Fabrication, bioconjugation, and diagnostic applications. Applied Materials Today, 2021, 25, 101183.	4.3	13
110	Mechanistic Evaluation of Antimicrobial Lipid Interactions with Tethered Lipid Bilayers by Electrochemical Impedance Spectroscopy. Sensors, 2022, 22, 3712.	3.8	13
111	Hydrophobic to superhydrophilic tuning of multifunctional sporopollenin for microcapsule and bio-composite applications. Applied Materials Today, 2020, 18, 100525.	4.3	12
112	Medicinal Activities and Nanomedicine Delivery Strategies for Brucea javanica Oil and Its Molecular Components. Molecules, 2020, 25, 5414.	3.8	12
113	Immobilization Strategies for Functional Complement Convertase Assembly at Lipid Membrane Interfaces. Langmuir, 2017, 33, 7332-7342.	3.5	11
114	Modulating conformational stability of human serum albumin and implications for surface passivation applications. Colloids and Surfaces B: Biointerfaces, 2019, 180, 306-312.	5.0	11
115	Versatile formation of supported lipid bilayers from bicellar mixtures of phospholipids and capric acid. Scientific Reports, 2020, 10, 13849.	3.3	11
116	Unraveling How Multivalency Triggers Shape Deformation of Sub-100 nm Lipid Vesicles. Journal of Physical Chemistry Letters, 2021, 12, 6722-6729.	4.6	11
117	Effect of Membrane Curvature Nanoarchitectonics on Membrane-Disruptive Interactions of Antimicrobial Lipids and Surfactants. Langmuir, 2022, 38, 4606-4616.	3.5	10
118	Optimal formation of uniform-phase supported lipid bilayers from phospholipid–monoglyceride bicellar mixtures. Journal of Industrial and Engineering Chemistry, 2020, 88, 285-291.	5.8	9
119	An Intrinsically Microâ€Nanostructured Pollen Substrate with Tunable Optical Properties for Optoelectronic Applications. Advanced Materials, 2021, 33, e2100566.	21.0	9
120	Antiviral peptide engineering for targeting membrane-enveloped viruses: Recent progress and future directions. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183821.	2.6	8
121	Detection of Amphipathic Viral Peptide on Screen-Printed Electrodes by Liposome Rupture Impact Voltammetry. Analytical Chemistry, 2017, 89, 11753-11757.	6.5	7
122	Quantitative Evaluation of Viral Protein Binding to Phosphoinositide Receptors and Pharmacological Inhibition. Analytical Chemistry, 2017, 89, 9742-9750.	6.5	7
123	Micropatterned Viral Membrane Clusters for Antiviral Drug Evaluation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13984-13990.	8.0	7
124	Supported lipid bilayer platform for characterizing the optimization of mixed monoglyceride nano-micelles. Applied Materials Today, 2020, 19, 100598.	4.3	7
125	Engineered lipid bicelle nanostructures for membrane-disruptive antibacterial applications. Applied Materials Today, 2021, 22, 100947.	4.3	7
126	Supported Lipid Bilayer Platform for Characterizing the Membrane-Disruptive Behaviors of Triton X-100 and Potential Detergent Replacements. International Journal of Molecular Sciences, 2022, 23, 869.	4.1	7

#	Article	IF	CITATIONS
127	Inkjet-Printed Phospholipid Bilayers on Titanium Oxide Surfaces: Towards Functional Membrane Biointerfaces. Membranes, 2022, 12, 361.	3.0	7
128	Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization. Sensors, 2022, 22, 5185.	3.8	7
129	Ultrahigh surface sensitivity of deposited gold nanorod arrays for nanoplasmonic biosensing. Applied Materials Today, 2021, 23, 101046.	4.3	6
130	Solvent-induced conformational tuning of lysozyme protein adlayers on silica surfaces: A QCM-D and LSPR study. International Journal of Biological Macromolecules, 2021, 182, 1906-1914.	7. 5	6
131	Streamlined Fabrication of Hybrid Lipid Bilayer Membranes on Titanium Oxide Surfaces: A Comparison of One- and Two-Tail SAM Molecules. Nanomaterials, 2022, 12, 1153.	4.1	6
132	Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements: Implications for biomacromolecular interaction analysis. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110338.	5.0	5
133	Dynamic remodeling of giant unilamellar vesicles induced by monoglyceride nano-micelles: Insights into supramolecular organization. Applied Materials Today, 2021, 24, 101099.	4.3	5
134	Lipid bilayer coatings for rapid enzyme-linked immunosorbent assay. Applied Materials Today, 2021, 24, 101128.	4.3	5
135	Multivalency-Induced Shape Deformation of Nanoscale Lipid Vesicles: Size-Dependent Membrane Bending Effects. Journal of Physical Chemistry Letters, 2022, 13, 1480-1488.	4.6	5
136	On/off switching of lipid bicelle adsorption on titanium oxide controlled by sub-monolayer molecular surface functionalization. Applied Materials Today, 2022, 27, 101444.	4.3	5
137	Effect of Glucose on the Mobility of Membrane-Adhering Liposomes. Langmuir, 2018, 34, 503-511.	3.5	4
138	Analysis of the initiation of viral infection under flow conditions with applications to transmission in feed. BioSystems, 2020, 196, 104184.	2.0	4
139	Surface engineering of plasmonic gold nanoisland platforms for high-sensitivity refractometric biosensing applications. Applied Materials Today, 2021, 26, 101280.	4.3	4
140	Targeting the Achilles Heel of Zika Virus and Other Emerging Viral Pathogens. Advanced Therapeutics, 2018, 1, 1800045.	3.2	3
141	Disentangling bulk polymers from adsorbed polymers using the quartz crystal microbalance. Applied Materials Today, 2020, 18, 100460.	4.3	3
142	Graphene Oxide Mimics Biological Signaling Cue to Rescue Starving Bacteria. Advanced Functional Materials, 2021, 31, 2102328.	14.9	3
143	Unraveling how nanoscale curvature drives formation of lysozyme protein monolayers on inorganic oxide surfaces. Applied Materials Today, 2020, 20, 100729.	4.3	2
144	3D Pollen Sponge: Colloidâ€Mediated Fabrication of a 3D Pollen Sponge for Oil Remediation Applications (Adv. Funct. Mater. 24/2021). Advanced Functional Materials, 2021, 31, 2170173.	14.9	2

#	Article	IF	CITATIONS
145	Biosensors: Controlling Lipid Membrane Architecture for Tunable Nanoplasmonic Biosensing (Small) Tj ETQq1 1 0	.784314 r 10.0	gBT /Overloc
146	Biosensors: Graphene-Functionalized Natural Microcapsules: Modular Building Blocks for Ultrahigh Sensitivity Bioelectronic Platforms (Adv. Funct. Mater. 13/2016). Advanced Functional Materials, 2016, 26, 2220-2220.	14.9	1
147	Antiviral Agents: Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay Establishes Design Guidelines for Antiviral Peptides (Small 20/2015). Small, 2015, 11, 2464-2464.	10.0	0
148	Biosensors: Flexible, Graphene-Coated Biocomposite for Highly Sensitive, Real-Time Molecular Detection (Adv. Funct. Mater. 47/2016). Advanced Functional Materials, 2016, 26, 8796-8796.	14.9	0
149	Functionalized Natural Particles: Lightâ€Induced Surface Modification of Natural Plant Microparticles: Toward Colloidal Science and Cellular Adhesion Applications (Adv. Funct. Mater. 18/2018). Advanced Functional Materials, 2018, 28, 1870120.	14.9	0