
Simon Linke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3256155/publications.pdf Version: 2024-02-01

SIMON	INVE

#	Article	IF	CITATIONS
1	Freshwater Ecoacoustics—A New Addition to the Limnologists' Methods Toolkit. , 2022, , .		0
2	Biodiversity Conservation of Aquatic Ecosystems. , 2022, , 641-652.		3
3	Sounding the Call for a Global Library of Underwater Biological Sounds. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	28
4	Global hydro-environmental lake characteristics at high spatial resolution. Scientific Data, 2022, 9, .	5.3	20
5	Minimizing cross-realm threats from land-use change: A national-scale conservation framework connecting land, freshwater and marine systems. Biological Conservation, 2021, 254, 108954.	4.1	18
6	Aquatic areas of ecological importance as inputs into surface water resource protection areas in Zambia. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1983-1997.	2.0	5
7	Global forest restoration opportunities to foster coral reef conservation. Global Change Biology, 2021, 27, 5238-5252.	9.5	18
8	Using climatic-geomorphological surrogates to identify complete and incidental freshwater conservation gaps within large river basins in China. Global Ecology and Conservation, 2021, 30, e01744.	2.1	4
9	Diurnal variation in freshwater ecoacoustics: Implications forÂsiteâ€level sampling design. Freshwater Biology, 2020, 65, 86-95.	2.4	19
10	Ecoacoustics can detect ecosystem responses to environmental water allocations. Freshwater Biology, 2020, 65, 133-141.	2.4	16
11	Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshwater Biology, 2020, 65, 7-19.	2.4	56
12	Six steps towards operationalising freshwater ecoacoustic monitoring. Freshwater Biology, 2020, 65, 1-6.	2.4	11
13	Spatioâ€ŧemporal heterogeneity in river sounds: Disentangling micro―and macroâ€variation in a chain of waterholes. Freshwater Biology, 2020, 65, 96-106.	2.4	11
14	Fulfilling Nature Needs Half through terrestrial-focused protected areas and their adequacy for freshwater ecosystems and biodiversity protection: A case from Bhutan. Journal for Nature Conservation, 2020, 58, 125894.	1.8	4
15	Freshwater conservation planning in the context of nature needs half and protected area dynamism in Bhutan. Biological Conservation, 2020, 251, 108785.	4.1	8
16	Singing streams: Describing freshwater soundscapes with the help of acoustic indices. Ecology and Evolution, 2020, 10, 4979-4989.	1.9	10
17	Interdisciplinary approaches to freshwater ecoacoustics. Freshwater Science, 2020, 39, 356-361.	1.8	10
18	Toward processâ€based conservation prioritizations for freshwater ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1149-1160.	2.0	52

#	Article	IF	CITATIONS
19	Half century of protected area dynamism in the country of Gross National Happiness, Bhutan. Conservation Science and Practice, 2019, 1, e46.	2.0	8
20	3D conservation planning: Including aquifer protection in freshwater plans refines priorities without much additional effort. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1063-1072.	2.0	20
21	Conservation planning for river-wetland mosaics: A flexible spatial approach to integrate floodplain and upstream catchment connectivity. Biological Conservation, 2019, 236, 356-365.	4.1	25
22	Characterizing seasonal dynamics of Amazonian wetlands for conservation and decision making. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1073-1082.	2.0	31
23	Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Scientific Data, 2019, 6, 283.	5.3	246
24	Catchment zoning to enhance coâ€benefits and minimize tradeâ€offs between ecosystem services and freshwater biodiversity conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 1004-1014.	2.0	35
25	Freshwater ecoacoustics as a tool for continuous ecosystem monitoring. Frontiers in Ecology and the Environment, 2018, 16, 231-238.	4.0	85
26	Information uncertainty influences conservation outcomes when prioritizing multiâ€action management efforts. Journal of Applied Ecology, 2018, 55, 2171-2180.	4.0	13
27	River Listening: Acoustic Ecology and Aquatic Bioacoustics in Global River Systems. Leonardo, 2018, 51, 298-299.	0.3	6
28	Impacts of fishing, river flow and connectivity loss on the conservation of a migratory fish population. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 45-54.	2.0	14
29	Tradeâ€offs in tripleâ€bottomâ€line outcomes when recovering fisheries. Fish and Fisheries, 2018, 19, 107-116.	5.3	8
30	It's time to listen: there is much to be learned from the sounds of tropical ecosystems. Biotropica, 2018, 50, 713-718.	1.6	74
31	Transforming Environmental Water Management to Adapt to a Changing Climate. Frontiers in Environmental Science, 2018, 6, .	3.3	22
32	Optimal allocation of Red List assessments to guide conservation of biodiversity in a rapidly changing world. Global Change Biology, 2017, 23, 3525-3532.	9.5	19
33	The imperative need for nationally coordinated bioassessment of rivers and streams. Marine and Freshwater Research, 2017, 68, 599.	1.3	26
34	Climate change decouples marine and freshwater habitats of a threatened migratory fish. Diversity and Distributions, 2017, 23, 751-760.	4.1	13
35	A Global Assessment of Inland Wetland Conservation Status. BioScience, 2017, 67, 523-533.	4.9	152
36	Looking Beyond the Fenceline: Assessing Protection Gaps for the World's Rivers. Conservation Letters, 2017, 10, 384-394.	5.7	85

#	Article	IF	CITATIONS
37	Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170627.	2.6	44
38	Incorporating ecological functions in conservation decision making. Ecology and Evolution, 2017, 7, 8273-8281.	1.9	28
39	Essential Biodiversity Variables for measuring change in global freshwater biodiversity. Biological Conservation, 2017, 213, 272-279.	4.1	114
40	Go with the flow: the movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river. Freshwater Biology, 2016, 61, 1242-1258.	2.4	63
41	Accounting for continuous species' responses to management effort enhances cost-effectiveness of conservation decisions. Biological Conservation, 2016, 197, 116-123.	4.1	25
42	Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 133-151.	2.0	72
43	The role of protected areas for freshwater biodiversity conservation: challenges and opportunities in a rapidly changing world. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 3-11.	2.0	135
44	Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change, 2016, 6, 1110-1114.	18.8	133
45	Enhancing conservation of <scp>A</scp> ustralian freshwater ecosystems: identification of freshwater flagship fishes and relevant target audiences. Fish and Fisheries, 2016, 17, 1134-1151.	5.3	28
46	A proposed framework to systematically design and objectively evaluate non-dominated restoration tradeoffs for watershed planning and management. Ecological Economics, 2016, 127, 146-155.	5.7	21
47	Prioritising catchment rehabilitation for multi objective management: An application from SE-Queensland, Australia. Ecological Modelling, 2015, 316, 168-175.	2.5	18
48	Catchment zoning for freshwater conservation: refining plans to enhance action on the ground. Journal of Applied Ecology, 2015, 52, 940-949.	4.0	36
49	Systematic planning of disconnection to enhance conservation success in a modified world. Science of the Total Environment, 2015, 536, 1038-1044.	8.0	19
50	Evaluating the costs and benefits of systematic data acquisition for conservation assessments. Ecography, 2015, 38, 283-292.	4.5	23
51	Assessing the risks and opportunities of presenceâ€only data for conservation planning. Journal of Biogeography, 2015, 42, 218-228.	3.0	22
52	Freshwater conservation planning. , 2015, , 437-466.		4
53	Multi-Action Planning for Threat Management: A Novel Approach for the Spatial Prioritization of Conservation Actions. PLoS ONE, 2015, 10, e0128027.	2.5	32
54	Systematic Conservation Planning for Groundwater Ecosystems Using Phylogenetic Diversity. PLoS ONE, 2014, 9, e115132.	2.5	39

#	Article	IF	CITATIONS
55	Planning Across Freshwater and Terrestrial Realms: Cobenefits and Tradeoffs Between Conservation Actions. Conservation Letters, 2014, 7, 425-440.	5.7	58
56	Bioassessment of freshwater ecosystems using the Reference Condition Approach: comparing established and new methods with common data sets. Freshwater Science, 2014, 33, 1204-1211.	1.8	27
57	Cost-effective river rehabilitation planning: Optimizing forÂmorphological benefits at large spatial scales. Journal of Environmental Management, 2014, 132, 296-303.	7.8	19
58	Understanding and predicting the combined effects of climate change and landâ€use change on freshwater macroinvertebrates and fish. Journal of Applied Ecology, 2014, 51, 572-581.	4.0	157
59	Freshwater conservation planning under climate change: demonstrating proactive approaches for Australian Odonata. Journal of Applied Ecology, 2014, 51, 1273-1281.	4.0	39
60	Data Acquisition for Conservation Assessments: Is the Effort Worth It?. PLoS ONE, 2013, 8, e59662.	2.5	27
61	Bioassessment of stream ecosystems enduring a decade of simulated degradation: lessons for the real world. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 784-796.	1.4	10
62	Merging connectivity rules and largeâ€scale condition assessment improves conservation adequacy in river systems. Journal of Applied Ecology, 2012, 49, 1036-1045.	4.0	84
63	Integrating multidirectional connectivity requirements in systematic conservation planning for freshwater systems. Diversity and Distributions, 2012, 18, 448-458.	4.1	94
64	Discrete vs. continuum approaches to the assessment of the ecological status in Iberian rivers, does the method matter?. Ecological Indicators, 2012, 18, 477-484.	6.3	5
65	Systematic planning for river rehabilitation: integrating multiple ecological and economic objectives in complex decisions. Freshwater Biology, 2012, 57, 1-9.	2.4	64
66	Integration of environmental flow assessment and freshwater conservation planning: a new era in catchment management. Marine and Freshwater Research, 2011, 62, 290.	1.3	27
67	Coarse-filter surrogates do not represent freshwater fish diversity at a regional scale in Queensland, Australia. Biological Conservation, 2011, 144, 2499-2511.	4.1	22
68	Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshwater Biology, 2011, 56, 57-70.	2.4	146
69	Freshwater conservation planning: the case for systematic approaches. Freshwater Biology, 2011, 56, 6-20.	2.4	181
70	Using multivariate analysis to deliver conservation planning products that align with practitioner needs. Ecography, 2011, 34, 203-207.	4.5	21
71	Bridging the gap between â€~planning' and â€~doing' for biodiversity conservation in freshwaters. Freshwater Biology, 2011, 56, 180-195.	2.4	43
72	Freshwater conservation planning: an introduction. Freshwater Biology, 2011, 56, 1-5.	2.4	34

#	Article	IF	CITATIONS
73	Reference vs. present-day condition: early planning decisions influence the achievement of conservation objectives. Aquatic Conservation: Marine and Freshwater Ecosystems, 2011, 21, 500-509.	2.0	26
74	Conservation decision-making in large state spaces. Ecological Modelling, 2010, 221, 2531-2536.	2.5	13
75	An approach for ensuring minimum protected area size in systematic conservation planning. Biological Conservation, 2010, 143, 2525-2531.	4.1	44
76	Incorporating asymmetric connectivity into spatial decision making for conservation. Conservation Letters, 2010, 3, 359-368.	5.7	119
77	Relationship of fish and macroinvertebrate assemblages to environmental factors: implications for community concordance. Hydrobiologia, 2009, 623, 87-103.	2.0	59
78	Finite conservation funds mean triage is unavoidable. Trends in Ecology and Evolution, 2009, 24, 183-184.	8.7	86
79	Estimating species richness and catch per unit effort from boat electroâ€fishing in a lowland river in temperate Australia. Austral Ecology, 2008, 33, 891-901.	1.5	16
80	Irreplaceability of river networks: towards catchmentâ€based conservation planning. Journal of Applied Ecology, 2008, 45, 1486-1495.	4.0	59
81	Is conservation triage just smart decision making?. Trends in Ecology and Evolution, 2008, 23, 649-654.	8.7	501
82	Integrating stream bioassessment and landscape ecology as a tool for land use planning. Freshwater Biology, 2007, 52, 908-917.	2.4	25
83	Management options for river conservation planning: condition and conservation re-visited. Freshwater Biology, 2007, 52, 918-938.	2.4	105
84	Very-broad-scale assessment of human impacts on river condition. Freshwater Biology, 2007, 52, 959-976.	2.4	60
85	Local stream habitat variables predicted from catchment scale characteristics are useful for predicting fish distribution. Hydrobiologia, 2006, 572, 59-70.	2.0	38
86	ANNA: A new prediction method for bioassessment programs. Freshwater Biology, 2005, 50, 147-158.	2.4	81
87	Biodiversity: bridging the gap between condition and conservation. Hydrobiologia, 2003, 500, 203-211.	2.0	18
88	Biodiversity: bridging the gap between condition and conservation. , 2003, , 203-211.		1
89	Temporal variability of stream bioassessments using benthic macroinvertebrates. Freshwater Biology, 1999, 42, 575-584.	2.4	106