
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3255739/publications.pdf Version: 2024-02-01

ΠΛΙΊΓΙΑ ΕΡΙΙΜΑΝ

#	Article	IF	CITATIONS
1	Targeting elF4F translation initiation complex with SBI-756 sensitises B lymphoma cells to venetoclax. British Journal of Cancer, 2021, 124, 1098-1109.	6.4	13
2	Targeting the Mevalonate Pathway in Cancer. Trends in Cancer, 2021, 7, 525-540.	7.4	50
3	A cross-institutional analysis of the effects of broadening trainee professional development on research productivity. PLoS Biology, 2021, 19, e3000956.	5.6	18
4	Reduced eIF4E function impairs B-cell leukemia without altering normal B-lymphocyte function. IScience, 2021, 24, 102748.	4.1	7
5	Efficacy of a Novel Bi-Steric mTORC1 Inhibitor in Models of B-Cell Acute Lymphoblastic Leukemia. Frontiers in Oncology, 2021, 11, 673213.	2.8	9
6	Targeting elF4F translation complex sensitizes B-ALL cells to tyrosine kinase inhibition. Scientific Reports, 2021, 11, 21689.	3.3	2
7	YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Science Advances, 2020, 6, .	10.3	127
8	A Case for Phosphoinositide 3-Kinase–Targeted Therapy for Infectious Disease. Journal of Immunology, 2020, 205, 3237-3245.	0.8	6
9	An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood, 2020, 135, 2337-2353.	1.4	49
10	Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to inhibit melanoma tumour growth. Nature Communications, 2020, 11, 3326.	12.8	57
11	Keys to successful implementation of a professional development program. , 2020, , 129-137.		2
12	Targeting PI3K-Gamma in Non-Hodgkin Lymphoma. Journal of Clinical Oncology, 2019, 37, 932-934.	1.6	7
13	The mTORC1/4E-BP/eIF4E Axis Promotes Antibody Class Switching in B Lymphocytes. Journal of Immunology, 2019, 202, 579-590.	0.8	20
14	The CD11a and Endothelial Protein C Receptor Marker Combination Simplifies and Improves the Purification of Mouse Hematopoietic Stem Cells. Stem Cells Translational Medicine, 2018, 7, 468-476.	3.3	3
15	Targeting the Mevalonate Pathway Suppresses VHL-Deficient CC-RCC through an HIF-Dependent Mechanism. Molecular Cancer Therapeutics, 2018, 17, 1781-1792.	4.1	19
16	Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget, 2018, 9, 8027-8041.	1.8	42
17	Statins enhance efficacy of venetoclax in blood cancers. Science Translational Medicine, 2018, 10, .	12.4	61
18	mTOR inhibition enhances efficacy of dasatinib in <i>ABL</i> -rearranged Ph-like B-ALL. Oncotarget, 2018, 9, 6562-6571.	1.8	15

DAVID A FRUMAN

#	Article	IF	CITATIONS
19	A targeted treatment with off-target risks. Nature, 2017, 542, 424-425.	27.8	18
20	mTORC1 Inhibition Induces Resistance to Methotrexate and 6-Mercaptopurine in Ph+ and Ph-like B-ALL. Molecular Cancer Therapeutics, 2017, 16, 1942-1953.	4.1	10
21	Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood, 2017, 129, 88-99.	1.4	92
22	The PI3K Pathway in Human Disease. Cell, 2017, 170, 605-635.	28.9	1,702
23	The Selective Phosphoinoside-3-Kinase p110δInhibitor IPI-3063 Potently Suppresses B Cell Survival, Proliferation, and Differentiation. Frontiers in Immunology, 2017, 8, 747.	4.8	21
24	Targeting mTOR for the treatment of B cell malignancies. British Journal of Clinical Pharmacology, 2016, 82, 1213-1228.	2.4	36
25	The 4E-BP–elF4E axis promotes rapamycin-sensitive growth and proliferation in lymphocytes. Science Signaling, 2016, 9, ra57.	3.6	56
26	mTOR signaling: new networks for ALL. Blood, 2016, 127, 2658-2659.	1.4	5
27	Viral/Nonviral Chimeric Nanoparticles To Synergistically Suppress Leukemia Proliferation <i>via</i> Simultaneous Gene Transduction and Silencing. ACS Nano, 2016, 10, 8705-8714.	14.6	22
28	Context-Specific Function of S6K2 in Th Cell Differentiation. Journal of Immunology, 2016, 197, 3049-3058.	0.8	13
29	mTOR Kinase Inhibitors Enhance Efficacy of TKIs in Preclinical Models of Ph-like B-ALL. Blood, 2016, 128, 2763-2763.	1.4	5
30	MLN0128, a novel mTOR kinase inhibitor, disrupts survival signaling and triggers apoptosis in AML and AML stem/ progenitor cells. Oncotarget, 2016, 7, 55083-55097.	1.8	31
31	Statins Potentiate the Cytotoxic Effect of ABT-199 in Diffuse Large B Cell Lymphoma. Blood, 2016, 128, 3969-3969.	1.4	0
32	MCL-1-independent mechanisms of synergy between dual PI3K/mTOR and BCL-2 inhibition in diffuse large B cell lymphoma. Oncotarget, 2015, 6, 35202-35217.	1.8	23
33	mTOR kinase inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells. Oncotarget, 2015, 6, 2088-2100.	1.8	30
34	INPP4B Is a Tumor Suppressor in the Context of PTEN Deficiency. Cancer Discovery, 2015, 5, 697-700.	9.4	17
35	Resistance to mTOR Kinase Inhibitors in Lymphoma Cells Lacking 4EBP1. PLoS ONE, 2014, 9, e88865.	2.5	37
36	Effects of Novel Isoform-Selective Phosphoinositide 3-Kinase Inhibitors on Natural Killer Cell Function. PLoS ONE, 2014, 9, e99486.	2.5	11

#	Article	IF	CITATIONS
37	Idelalisib — A PI3Kδ Inhibitor for B-Cell Cancers. New England Journal of Medicine, 2014, 370, 1061-1062.	27.0	86
38	mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5076-85.	7.1	57
39	PI3K and cancer: lessons, challenges and opportunities. Nature Reviews Drug Discovery, 2014, 13, 140-156.	46.4	1,398
40	Too much of a good thing: immunodeficiency due to hyperactive PI3K signaling. Journal of Clinical Investigation, 2014, 124, 3688-3690.	8.2	13
41	Can Cancer Drugs Treat Immunodeficiency?. Science, 2013, 342, 814-815.	12.6	7
42	Achieving cancer cell death with PI3K/mTORâ€ŧargeted therapies. Annals of the New York Academy of Sciences, 2013, 1280, 15-18.	3.8	25
43	Selective Inhibition of Phosphoinositide 3-Kinase p110α Preserves Lymphocyte Function*. Journal of Biological Chemistry, 2013, 288, 5718-5731.	3.4	60
44	Targeting of the MNK–eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2298-307.	7.1	132
45	Akt and mTOR in B Cell Activation and Differentiation. Frontiers in Immunology, 2012, 3, 228.	4.8	165
46	PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. Biochemical Journal, 2012, 442, 465-481.	3.7	196
47	PrP. , 2012, , 1488-1488.		0
48	PI3Kδ Inhibitors in Cancer: Rationale and Serendipity Merge in the Clinic. Cancer Discovery, 2011, 1, 562-572.	9.4	126
49	Targeting of a Novel MNK-eIF4E-b-Catenin Axis in Blast Crisis Chronic Myelogenous Leukemia Inhibits Leukemia Stem Cell Function. Blood, 2011, 118, 963-963.	1.4	1
50	The TOR Kinase Inhibitor INK128 Is Effective in Pre-B Acute Lymphoblastic Leukemia Models. Blood, 2011, 118, 2585-2585.	1.4	0
51	Foxo1 regulates marginal zone Bâ€cell development. European Journal of Immunology, 2010, 40, 1890-1896.	2.9	40
52	Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nature Medicine, 2010, 16, 205-213.	30.7	329
53	Phosphoinositide 3-Kinases. , 2010, , 1049-1060.		5
54	Target of Rapamycin Signaling in Leukemia and Lymphoma. Clinical Cancer Research, 2010, 16, 5374-5380.	7.0	44

#	Article	IF	CITATIONS
55	Regulatory Subunits of Class IA PI3K. Current Topics in Microbiology and Immunology, 2010, 346, 225-244.	1.1	40
56	B Cell Receptor Signaling: Picky About PI3Ks. Science Signaling, 2010, 3, pe25.	3.6	12
57	PI3Ks in Lymphocyte Signaling and Development. Current Topics in Microbiology and Immunology, 2010, 346, 57-85.	1.1	55
58	Targeting TOR dependence in cancer. Oncotarget, 2010, 1, 69-76.	1.8	43
59	The p85β regulatory subunit of phosphoinositide 3-kinase has unique and redundant functions in B cells. Autoimmunity, 2009, 42, 447-458.	2.6	16
60	Immune Regulation by Rapamycin: Moving Beyond T Cells. Science Signaling, 2009, 2, pe25.	3.6	40
61	Organâ€specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from geneâ€targeting of the PI3K regulatory isoforms p85α, p55α, and p50α. Developmental Dynamics, 2009, 238, 2670-2679.	1.8	54
62	Fine tuning the immune response with PI3K. Immunological Reviews, 2009, 228, 253-272.	6.0	191
63	p85β phosphoinositide 3-kinase regulates CD28 coreceptor function. Blood, 2009, 113, 3198-3208.	1.4	34
64	FOXO1 Regulates L-Selectin and a Network of Human T Cell Homing Molecules Downstream of Phosphatidylinositol 3-Kinase. Journal of Immunology, 2008, 181, 2980-2989.	0.8	181
65	Cancer therapy: staying current with AMPK. Biochemical Journal, 2008, 412, e3-e5.	3.7	16
66	KLF4 is a FOXO target gene that suppresses B cell proliferation. International Immunology, 2008, 20, 671-681.	4.0	66
67	Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. Journal of Clinical Investigation, 2008, 118, 3038-3050.	8.2	148
68	Class IA Phosphoinositide 3-Kinase Modulates Basal Lymphocyte Motility in the Lymph Node. Journal of Immunology, 2007, 179, 2261-2269.	0.8	39
69	KLF4 suppresses transformation of pre-B cells by ABL oncogenes. Blood, 2007, 109, 747-755.	1.4	59
70	T-cell function is partially maintained in the absence of class IA phosphoinositide 3-kinase signaling. Blood, 2007, 109, 2894-2902.	1.4	54
71	Role of phosphoinositide 3-kinase signaling in autoimmunity. Autoimmunity, 2007, 40, 433-441.	2.6	16
72	Measuring Phosphorylated Akt and Other Phosphoinositide 3-kinase-Regulated Phosphoproteins in Primary Lymphocytes. Methods in Enzymology, 2007, 434, 131-154.	1.0	18

#	Article	IF	CITATIONS
73	Distinct signaling mechanisms activate the target of rapamycin in response to different Bâ€cell stimuli. European Journal of Immunology, 2007, 37, 2923-2936.	2.9	74
74	FOXO Transcription Factors Cooperate with δEF1 to Activate Growth Suppressive Genes in B Lymphocytes. Journal of Immunology, 2006, 176, 2711-2721.	0.8	72
75	Sjogren's syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16882-16887.	7.1	68
76	Role of Phosphoinositide 3-Kinase Regulatory Isoforms in Development and Actin Rearrangement. Molecular and Cellular Biology, 2005, 25, 2593-2606.	2.3	120
77	ABL Oncogenes and Phosphoinositide 3-Kinase: Mechanism of Activation and Downstream Effectors. Cancer Research, 2005, 65, 2047-2053.	0.9	141
78	Analysis of the Major Patterns of B Cell Gene Expression Changes in Response to Short-Term Stimulation with 33 Single Ligands. Journal of Immunology, 2004, 173, 7141-7149.	0.8	55
79	Altered splenic B cell subset development in mice lacking phosphoinositide 3-kinase p85Â. International Immunology, 2004, 16, 1789-1798.	4.0	28
80	Enhanced T Cell Proliferation in Mice Lacking the p85β Subunit of Phosphoinositide 3-Kinase. Journal of Immunology, 2004, 172, 6615-6625.	0.8	69
81	Phosphoinositide 3-kinase and its targets in B-cell and T-cell signaling. Current Opinion in Immunology, 2004, 16, 314-320.	5.5	121
82	Frontline: The p85? isoform of phosphoinositide 3-kinase is essential for a subset of B cell receptor-initiated signaling responses. European Journal of Immunology, 2004, 34, 2968-2976.	2.9	24
83	P <scp>hosphoinositide</scp> 3-K <scp>inase</scp> : Diverse Roles in Immune Cell Activation. Annual Review of Immunology, 2004, 22, 563-598.	21.8	317
84	PI3K signaling controls cell fate at many points in B lymphocyte development and activation. Seminars in Cell and Developmental Biology, 2004, 15, 183-197.	5.0	59
85	Optimal B-cell proliferation requires phosphoinositide 3-kinase–dependent inactivation of FOXO transcription factors. Blood, 2004, 104, 784-787.	1.4	125
86	Phosphoinositide 3-kinase signaling is essential for ABL oncogene–mediated transformation of B-lineage cells. Blood, 2004, 103, 4268-4275.	1.4	83
87	Regulation of quiescence in lymphocytes. Trends in Immunology, 2003, 24, 380-386.	6.8	178
88	Altered Signaling and Cell Cycle Regulation in Embryonal Stem Cells with a Disruption of the Gene for Phosphoinositide 3-Kinase Regulatory Subunit p851±. Journal of Biological Chemistry, 2003, 278, 5099-5108.	3.4	39
89	Positive and Negative Roles of p85α and p85β Regulatory Subunits of Phosphoinositide 3-Kinase in Insulin Signaling. Journal of Biological Chemistry, 2003, 278, 48453-48466.	3.4	183
90	Proliferation and Survival of Activated B Cells Requires Sustained Antigen Receptor Engagement and Phosphoinositide 3-Kinase Activation. Journal of Immunology, 2003, 170, 5851-5860.	0.8	85

#	Article	IF	CITATIONS
91	Phosphoinositide 3-kinase and Bruton's tyrosine kinase regulate overlapping sets of genes in B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 359-364.	7.1	61
92	Molecular Balance between the Regulatory and Catalytic Subunits of Phosphoinositide 3-Kinase Regulates Cell Signaling and Survival. Molecular and Cellular Biology, 2002, 22, 965-977.	2.3	254
93	Phosphoinositide 3-kinase in immunological systems. Seminars in Immunology, 2002, 14, 7-18.	5.6	193
94	Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. Journal of Clinical Investigation, 2002, 109, 141-149.	8.2	183
95	Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α. Nature Genetics, 2000, 26, 379-382.	21.4	273
96	Impaired Kit- but Not FcεRI-initiated Mast Cell Activation in the Absence of Phosphoinositide 3-Kinase p85α Gene Products. Journal of Biological Chemistry, 2000, 275, 6022-6029.	3.4	75
97	Xid-like Phenotypes. Immunity, 2000, 13, 1-3.	14.3	192
98	The SH2 Domain-containing Inositol 5′-Phosphatase (SHIP) Recruits the p85 Subunit of Phosphoinositide 3-Kinase during Fcl³RIIb1-mediated Inhibition of B Cell Receptor Signaling. Journal of Biological Chemistry, 1999, 274, 7489-7494.	3.4	53
99	SYK Is Upstream of Phosphoinositide 3-Kinase in B Cell Receptor Signaling. Journal of Biological Chemistry, 1999, 274, 32662-32666.	3.4	164
100	PI 3-KINASE KNOCKOUT MICE: ROLE OF p $85\hat{1}\pm$ IN B CELL DEVELOPMENT AND PROLIFERATION. Biochemical Society Transactions, 1999, 27, A73-A73.	3.4	0
101	Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO Journal, 1998, 17, 1961-1972.	7.8	418
102	PHOSPHOINOSITIDE KINASES. Annual Review of Biochemistry, 1998, 67, 481-507.	11.1	1,366
103	Transformation of Chicken Cells by the Gene Encoding the Catalytic Subunit of PI 3-Kinase. Science, 1997, 276, 1848-1850.	12.6	398
104	Structural Organization and Alternative Splicing of the Murine Phosphoinositide 3-Kinase p85α Gene. Genomics, 1996, 37, 113-121.	2.9	118
105	FK506 binding protein 12 mediates sensitivity to both FK506 and rapamycin in murine mast cells. European Journal of Immunology, 1995, 25, 563-571.	2.9	72
106	Immunophilins in protein folding and immunosuppression ¹ . FASEB Journal, 1994, 8, 391-400.	0.5	248
107	Correlation of calcineurin phosphatase activity and programmed cell death in murine T cell hybridomas. European Journal of Immunology, 1992, 22, 2513-2517.	2.9	99