
Yoshito Tobe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3255277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyethynylated cyclic π-systems: scaffoldings for novel two and three-dimensional carbon networks. Chemical Society Reviews, 1999, 28, 107-119.	18.7	394
2	Two-Dimensional Porous Molecular Networks of Dehydrobenzo[12]annulene Derivatives via Alkyl Chain Interdigitation. Journal of the American Chemical Society, 2006, 128, 16613-16625.	6.6	343
3	Molecular Loops and Belts. Chemical Reviews, 2006, 106, 5274-5290.	23.0	339
4	Covalent Modification of Graphene and Graphite Using Diazonium Chemistry: Tunable Grafting and Nanomanipulation. ACS Nano, 2015, 9, 5520-5535.	7.3	274
5	One Building Block, Two Different Supramolecular Surfaceâ€Confined Patterns: Concentration in Control at the Solid–Liquid Interface. Angewandte Chemie - International Edition, 2008, 47, 2964-2968.	7.2	273
6	Indeno[2,1â€ <i>b</i>]fluorene: A 20â€Ï€â€Electron Hydrocarbon with Very Lowâ€Energy Light Absorption. Angewandte Chemie - International Edition, 2013, 52, 6076-6079.	7.2	228
7	m-Diethynylbenzene Macrocycles:Â Syntheses and Self-Association Behavior in Solution. Journal of the American Chemical Society, 2002, 124, 5350-5364.	6.6	225
8	Indeno[2,1â€ <i>a</i>]fluorene: An Airâ€Stable <i>ortho</i> â€Quinodimethane Derivative. Angewandte Chemie - International Edition, 2011, 50, 6906-6910.	7.2	221
9	Structural Transformation of a Two-Dimensional Molecular Network in Response to Selective Guest Inclusion. Angewandte Chemie - International Edition, 2007, 46, 2831-2834.	7.2	182
10	Temperature-Induced Structural Phase Transitions in a Two-Dimensional Self-Assembled Network. Journal of the American Chemical Society, 2013, 135, 12068-12075.	6.6	180
11	Control and induction of surface-confined homochiral porous molecular networks. Nature Chemistry, 2011, 3, 714-719.	6.6	179
12	Supramolecular surface-confined architectures created by self-assembly of triangular phenylene–ethynylene macrocycles via van der Waals interaction. Chemical Communications, 2010, 46, 8507.	2.2	170
13	Programmable Hierarchical Three-Component 2D Assembly at a Liquidâ~'Solid Interface: Recognition, Selection, and Transformation. Nano Letters, 2008, 8, 2541-2546.	4.5	155
14	Twoâ€Dimensional Crystal Engineering: A Fourâ€Component Architecture at a Liquid–Solid Interface. Angewandte Chemie - International Edition, 2009, 48, 7353-7357.	7.2	154
15	Molecular Clusters in Two-Dimensional Surface-Confined Nanoporous Molecular Networks: Structure, Rigidity, and Dynamics. Journal of the American Chemical Society, 2008, 130, 7119-7129.	6.6	149
16	Molecular Geometry Directed Kagomé and Honeycomb Networks: Toward Two-Dimensional Crystal Engineering. Journal of the American Chemical Society, 2006, 128, 3502-3503.	6.6	143
17	2D Networks of Rhombic-Shaped Fused Dehydrobenzo[12]annulenes: Structural Variations under Concentration Control. Journal of the American Chemical Society, 2009, 131, 17583-17590.	6.6	124
18	Synthesis and Anion-Selective Complexation of Cyclophane-Based Cyclic Thioureas. Journal of Organic Chemistry, 2000, 65, 275-283.	1.7	121

#	Article	IF	CITATIONS
19	Synthesis of Differentially Substituted Hexaethynylbenzenes Based on Tandem Sonogashira and Negishi Cross-Coupling Reactions. Organic Letters, 2001, 3, 2419-2421.	2.4	119
20	Synthesis and Properties of Trefoil-Shaped Tris(hexadehydrotribenzo[12]annulene) and Tris(tetradehydrotribenzo[12]annulene). Organic Letters, 2006, 8, 2933-2936.	2.4	110
21	Nonâ€Alternant Nonâ€Benzenoid <scp>A</scp> romatic <scp>C</scp> ompounds: Past, Present, and Future. Chemical Record, 2015, 15, 86-96.	2.9	110
22	Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution–solid interface. Nature Chemistry, 2016, 8, 711-717.	6.6	107
23	Synthesis and Association Behavior of [4.4.4.4.4]Metacyclophanedodecayne Derivatives with Interior Binding Groups. Angewandte Chemie - International Edition, 1998, 37, 1285-1287.	7.2	106
24	Non-alternant non-benzenoid kekulenes: the birth of a new kekulene family. Chemical Society Reviews, 2015, 44, 6560-6577.	18.7	106
25	[5]Paracyclophane. Journal of the American Chemical Society, 1985, 107, 3716-3717.	6.6	99
26	Synthesis and Association Behavior of Butadiyne-Bridged [44](2,6)Pyridinophane and [46](2,6)Pyridinophane Derivatives. Organic Letters, 2000, 2, 3265-3268.	2.4	94
27	Donors and Acceptors Based on Triangular Dehydrobenzo[12]annulenes: Formation of a Triple-Layered Rosette Structure by a Charge-Transfer Complex. Journal of the American Chemical Society, 2008, 130, 14339-14345.	6.6	91
28	Tetradehydrodinaphtho[10]annulene: A Hitherto Unknown Dehydroannulene and a Viable Precursor to Stable Zethrene Derivatives. Organic Letters, 2009, 11, 4104-4106.	2.4	89
29	[16.16.16](1,3,5)Cyclophanetetracosayne (C60H6):Â A Precursor to C60Fullerene. Journal of the American Chemical Society, 1998, 120, 4544-4545.	6.6	88
30	Tetracyclopenta[<i>def,jkl,pqr,vwx</i>]tetraphenylene: A Potential Tetraradicaloid Hydrocarbon. Angewandte Chemie - International Edition, 2015, 54, 2090-2094.	7.2	87
31	Synthesis, Structure, and Photophysical Properties of Dibenzo[<i>de</i> , <i>mn</i>]naphthacenes. Angewandte Chemie - International Edition, 2010, 49, 7059-7062.	7.2	85
32	Synthesis of Dehydrobenzo[18]annulene Derivatives and Formation of Self-Assembled Monolayers: Implications of Core Size on Alkyl Chain Interdigitation. Langmuir, 2007, 23, 10190-10197.	1.6	81
33	Lipase-catalyzed enantioselective acylation of alcohols: a predictive active site model for lipase YS to identify which enantiomer of an alcohol reacts faster in this acylation. Tetrahedron: Asymmetry, 1995, 6, 2385-2394.	1.8	80
34	Enantioselective acylation of primary and secondary alcohols catalyzed by lipase QL from Alcaligenes sp.: A predictive active site model for lipase QL to identify which enantiomer of an alcohol reacts faster in this acylation. Tetrahedron: Asymmetry, 1996, 7, 3285-3294.	1.8	80
35	A Shuttling Molecular Machine with Reversible Brake Function. Chemistry - A European Journal, 2008, 14, 3427-3433.	1.7	75
36	Benz[c]indeno[2,1-a]fluorene: a 2,3-naphthoquinodimethane incorporated into an indenofluorene frame. Chemical Science, 2014, 5, 163-168.	3.7	75

#	Article	IF	CITATIONS
37	Role of Substrate in Directing the Self-Assembly of Multicomponent Supramolecular Networks at the Liquid–Solid Interface. ACS Nano, 2012, 6, 8381-8389.	7.3	74
38	Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface. Nature Communications, 2016, 7, 12711.	5.8	71
39	Solvent-Induced Homochirality in Surface-Confined Low-Density Nanoporous Molecular Networks. Journal of the American Chemical Society, 2012, 134, 19568-19571.	6.6	69
40	One Building Block, Two Different Nanoporous Self-Assembled Monolayers: A Combined STM and Monte Carlo Study. ACS Nano, 2012, 6, 897-903.	7.3	69
41	[2 + 2] Cycloreversion of [4.3.2]Propella-1,3,11-trienes:Â An Approach to Cyclo[n]carbons from Propellane-Annelated Dehydro[n]annulenes. Journal of the American Chemical Society, 2000, 122, 1762-1775.	6.6	67
42	Strained Dehydrobenzoannulenes. European Journal of Organic Chemistry, 2006, 2006, 833-847.	1.2	66
43	Site-Selective Guest Inclusion in Molecular Networks of Butadiyne-Bridged Pyridino and Benzeno Square Macrocycles on a Surface. Journal of the American Chemical Society, 2008, 130, 6666-6667.	6.6	66
44	Syntheses and Properties of Graphyne Fragments: Trigonally Expanded Dehydrobenzo[12]annulenes. Chemistry - A European Journal, 2013, 19, 11251-11260.	1.7	66
45	Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces. Bulletin of the Chemical Society of Japan, 2016, 89, 1277-1306.	2.0	65
46	Theoretical Studies on Graphyne Substructures:Â Geometry, Aromaticity, and Electronic Properties of the Multiply Fused Dehydrobenzo[12]annulenes. Journal of Organic Chemistry, 2007, 72, 1437-1442.	1.7	62
47	Synthesis and structure of 8-carboxy[6]paracyclophane. Journal of the American Chemical Society, 1983, 105, 1376-1377.	6.6	60
48	Host–Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid–Solid Interfaces. Langmuir, 2017, 33, 4601-4618.	1.6	60
49	Synthesis, structure and reactivities of [6]paracyclophanes. Tetrahedron, 1986, 42, 1851-1858.	1.0	59
50	A Tale of Tails: Alkyl Chain Directed Formation of 2D Porous Networks Reveals Odd–Even Effects and Unexpected Bicomponent Phase Behavior. ACS Nano, 2013, 7, 8031-8042.	7.3	58
51	Generation of Cyclocarbons with 4n Carbon Atoms(C12, C16, and C20) by[2+ 2] Cycloreversion of Propellane-Annelated Dehydroannulenes. Angewandte Chemie International Edition in English, 1996, 35, 1800-1802.	4.4	57
52	Tailoring Surface onfined Nanopores with Photoresponsive Groups. Angewandte Chemie - International Edition, 2013, 52, 8373-8376.	7.2	57
53	A New Entry into Cyclo[n]carbons:Â [2 + 2] Cycloreversion of Propellane-Annelated Dehydroannulenes. Journal of the American Chemical Society, 1996, 118, 2758-2759.	6.6	56
54	Multifunctional π-Expanded Macrocyclic Oligothiophene 6-Mers and Related Macrocyclic Oligomers. Journal of the American Chemical Society, 2014, 136, 2389-2396.	6.6	56

#	Article	IF	CITATIONS
55	Quinodimethanes Incorporated in Non-Benzenoid Aromatic or Antiaromatic Frameworks. Topics in Current Chemistry, 2018, 376, 12.	3.0	56
56	Synthesis and self-association properties of diethynylbenzene macrocycles. Tetrahedron Letters, 1996, 37, 9325-9328.	0.7	55
57	Giant molecular spoked wheels in giant voids: two-dimensional molecular self-assembly goes big. Chemical Communications, 2008, , 3897.	2.2	55
58	Self-Assembled Air-Stable Supramolecular Porous Networks on Graphene. ACS Nano, 2013, 7, 10764-10772.	7.3	55
59	Skeletal Rearrangement of Twisted Polycyclic Aromatic Hydrocarbons under Scholl Reaction Conditions. Organic Letters, 2017, 19, 3227-3230.	2.4	54
60	Polyyne cyclization to form carbon cages: [16.16.16](1,3,5)cyclophanetetracosayne derivatives C60H6 and C60Cl6 as precursors to C60 fullerene. Tetrahedron, 2001, 57, 3629-3636.	1.0	53
61	An Anthraceneâ€Based Photochromic Macrocycle as a Key Ring Component To Switch a Frequency of Threading Motion. Chemistry - A European Journal, 2008, 14, 981-986.	1.7	53
62	Towards enantioselective adsorption in surface-confined nanoporous systems. Chemical Communications, 2015, 51, 4766-4769.	2.2	53
63	Fluoreno[2,3- <i>b</i>]fluorene vs Indeno[2,1- <i>b</i>]fluorene: Unusual Relationship between the Number of Ĩ€ Electrons and Excitation Energy in <i>m</i> -Quinodimethane-Type Singlet Diradicaloids. Journal of Organic Chemistry, 2017, 82, 1380-1388.	1.7	52
64	Synthesis of butadiyne-bridged [4n] metacyclophanes having exo-annular t-butyl groups. Tetrahedron, 2001, 57, 8075-8083.	1.0	51
65	Chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether for enantiomer separation of amino compounds using a normal mobile phase. Chirality, 2005, 17, 142-148.	1.3	49
66	Axle Length Does Not Affect Switching Dynamics in Degenerate Molecular Shuttles with Rigid Spacers. Journal of the American Chemical Society, 2014, 136, 7899-7906.	6.6	49
67	Novel rearrangement of 5,6-disubstituted bicyclo[4.2.0]octan-2-ones with aluminum chloride. Application to total synthesis of (.+)-5-oxosilphiperfol-6-ene and (.+)-silphiperfol-6-ene. Journal of the American Chemical Society, 1989, 111, 3707-3712.	6.6	48
68	Dielsâ~'Alder Reactions of Tetraethynylcyclopentadienones. An Approach to Differentially Substituted Hexaethynylbenzenes ofC2vSymmetry. Journal of Organic Chemistry, 1997, 62, 3430-3431.	1.7	48
69	Resonance Raman spectra of polyyne molecules C10H2 and C12H2 in solution. Chemical Physics Letters, 2007, 433, 296-300.	1.2	48
70	Expanded Radialenes with Bicyclo[4.3.1]decatriene Units: New Precursors to Cyclo[n]carbons. Chemistry - A European Journal, 2003, 9, 5549-5559.	1.7	47
71	Bent acenes. Synthesis and molecular structure of [6](1,4)naphthalenophane and [6](1,4)anthracenophane. Journal of the American Chemical Society, 1990, 112, 8889-8894.	6.6	46
72	Self-Assembled Monolayers as Templates for Linearly Nanopatterned Covalent Chemical Functionalization of Graphite and Graphene Surfaces. ACS Nano, 2018, 12, 11520-11528.	7.3	44

#	Article	IF	CITATIONS
73	Lipase YS-catalysed acylation of alcohols: a predictive active site model for lipase YS to identify which enantiomer of a primary or a secondary alcohol reacts faster in this acylation. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1253.	0.9	43
74	Photoelectron spectroscopy of Cnâ^' produced from laser ablated dehydroannulene derivatives having carbon ring size of n=12, 16, 18, 20, and 24. Journal of Chemical Physics, 1997, 107, 4783-4787.	1.2	43
75	Strained [n]cyclophanes. , 1994, , 1-40.		42
76	Efficient Synthesis of Biindenylidene Derivatives via a Domino-Heck-Type Double Cyclization of Diaryldienynes. Organic Letters, 2003, 5, 3411-3414.	2.4	42
77	Synthesis and Anion-Selective Complexation of Homobenzylic Tripodal Thiourea Derivatives. European Journal of Organic Chemistry, 2007, 2007, 607-615.	1.2	42
78	Towards two-dimensional nanoporous networks: crystal engineering at the solid–liquid interface. CrystEngComm, 2010, 12, 3369.	1.3	41
79	Preparation and temperature-dependent enantioselectivities of homochiral phenolic crown ethers having aryl chiral barriers: thermodynamic parameters for enantioselective complexation with chiral amines. Tetrahedron: Asymmetry, 1998, 9, 563-574.	1.8	40
80	Indenofluorene congeners: Biradicaloids and beyond. Pure and Applied Chemistry, 2014, 86, 517-528.	0.9	40
81	Periodic Functionalization of Surface-Confined Pores in a Two-Dimensional Porous Network Using a Tailored Molecular Building Block. ACS Nano, 2016, 10, 2113-2120.	7.3	40
82	On the formation of concentric 2D multicomponent assemblies at the solution–solid interface. Chemical Communications, 2017, 53, 1108-1111.	2.2	40
83	Enantioselective acylation of alcohols catalyzed by lipase QL from Alcaligenes sp.: A predictive active site model for lipase QL to identify the faster reacting enantiomer of an alcohol in this acylation. Tetrahedron: Asymmetry, 1996, 7, 1581-1584.	1.8	39
84	Highly Selective and High-Yielding Rotaxane Synthesis via Aminolysis of Prerotaxanes Consisting of a Ring Component and a Stopper Unit. Organic Letters, 2007, 9, 2969-2972.	2.4	39
85	Convenient Synthesis and Photophysical Properties of Tetrabenzopentakisdehydro[12]annuleno[12]annulene. Chemistry Letters, 2004, 33, 972-973.	0.7	38
86	Formation of Multicomponent Star Structures at the Liquid/Solid Interface. Langmuir, 2015, 31, 7032-7040.	1.6	38
87	Novel Synthesis of Bridged Phenylthienylethenes and Dithienylethenes via Pd-Catalyzed Double-Cyclization Reactions of Diarylhexadienynes. Organic Letters, 2006, 8, 1197-1200.	2.4	37
88	Tetradehydrodinaphtho[10]annulene and its transformation into zethrene: A hitherto unknown dehydroannulene and a forgotten aromatic hydrocarbon. Pure and Applied Chemistry, 2010, 82, 871-878.	0.9	37
89	Mixing Behavior of Alkoxylated Dehydrobenzo[12]annulenes at the Solid–Liquid Interface: Scanning Tunneling Microscopy and Monte Carlo Simulations. ACS Nano, 2011, 5, 4145-4157.	7.3	37
90	Functionalized Surface-Confined Pores: Guest Binding Directed by Lateral Noncovalent Interactions at the Solid–Liquid Interface. ACS Nano, 2014, 8, 8683-8694.	7.3	37

#	Article	IF	CITATIONS
91	Enantioselective complexation of phenolic crown ethers with chiral aminoethanol derivatives: effects of substituents of aromatic rings of hosts and guests on complexation â€. Perkin Transactions II RSC, 2000, , 1984-1993.	1.1	36
92	Synthesis and molecular structure of (Z)-[6]Paracycloph-3-enes. Journal of the American Chemical Society, 1987, 109, 1136-1144.	6.6	35
93	Diindenopyrenes: Extended 1,6- and 1,8-Pyrenoquinodimethanes with Singlet Diradical Characters. Journal of Organic Chemistry, 2016, 81, 3735-3743.	1.7	35
94	Stereocontrolled total synthesis of (\hat{A} ±)-isocomene and (\hat{A} ±)- \hat{I}^2 -isocomene via ring enlargement. Journal of the Chemical Society Chemical Communications, 1985, , 898-899.	2.0	33
95	Enzyme-catalyzed asymmetric acylation and hydrolysis of cis-2,5-disubstituted tetrahydrofuran derivatives: Contribution to development of models for reactions catalyzed by porcine liver esterase and porcine pancreatic lipase. Tetrahedron: Asymmetry, 1993, 4, 911-918.	1.8	33
96	Azophenolic acerands having chiral 1-phenyl-cis-1,2-cyclohexanediol units: a correlation between enantiorecognitive coloration and host-guest complementarity. Journal of the American Chemical Society, 1993, 115, 8475-8476.	6.6	33
97	[12.12]Paracyclophanedodecaynes C36H8 and C36Cl8: The Smallest Paracyclophynes and Their Transformation into the Carbon Cluster Ion C36â [°] This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education,Science,Sports and Culture of Japan. Y.T. is grateful to Shin-Etsu Chemical Co. for the generous gift of an organosilicon reagent. Angewandte	7.2	33
98	Chemic - International Edition, 2001, 40, 4072, Preparation and evaluation of a chiral stationary phase covalently bound with chiral pseudo-18-crown-6 ether having 1-phenyl-1,2-cyclohexanediol as a chiral unit. Journal of Chromatography A, 2005, 1078, 35-41.	1.8	33
99	Twoâ€Photon Absorption Properties of Dehydrobenzo[12]annulenes and Hexakis(phenylethynyl)benzenes: Effect of Edgeâ€Linkage. ChemPhysChem, 2007, 8, 2671-2677.	1.0	33
100	Multicomponent Selfâ€Assembly with a Shapeâ€Persistent <i>N</i> â€Heterotriangulene Macrocycle on Au(111). Chemistry - A European Journal, 2015, 21, 1652-1659.	1.7	33
101	Unusual reactivity of bent acenes: reactions of [6](1,4)naphthalenophane and [6](1,4)anthracenophane with electrophiles. Journal of the American Chemical Society, 1992, 114, 3479-3491.	6.6	32
102	Photochemical Method for Generation of Linear Polyynes: [2 + 2] Cycloreversion of [4.3.2]Propellatrienes Extruding Indan. Journal of Organic Chemistry, 1994, 59, 1236-1237.	1.7	32
103	Preparation and evaluation of a chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether having a phenolic hydroxy group for enantiomer separation of amino compounds. Journal of Chromatography A, 2006, 1129, 201-207.	1.8	32
104	Preparation and evaluation of novel chiral stationary phases covalently bound with chiral pseudo-18-crown-6 ethers. Tetrahedron Letters, 2003, 44, 1549-1551.	0.7	31
105	The Asymmetry is Derived from Mechanical Interlocking of Achiral Axle and Achiral Ring Components –Syntheses and Properties of Optically Pure [2]Rotaxanes–. Symmetry, 2018, 10, 20.	1.1	31
106	Steric and Electronic Effects of Electrochemically Generated Aryl Radicals on Grafting of the Graphite Surface. Langmuir, 2019, 35, 2089-2098.	1.6	30
107	Generation and Characterization of Highly Strained Dibenzotetrakisdehydro[12]annulene. Journal of the American Chemical Society, 2003, 125, 5614-5615.	6.6	29
108	Self-assembly of molecular tripods in two dimensions: structure and thermodynamics from computer simulations. RSC Advances, 2013, 3, 25159.	1.7	29

#	Article	IF	CITATIONS
109	[4.2](2,2′)(2,2′)Biphenylophanetriyne: A Twisted Biphenylophane with a Highly Distorted Diacetylene Bridge. Organic Letters, 2014, 16, 1940-1943.	2.4	29
110	Vinylidene to alkyne rearrangement to form polyynes: synthesis and photolysis of dialkynylmethylenebicyclo[4.3.1]deca-1,3,5-triene derivatives. Tetrahedron Letters, 2001, 42, 5485-5488.	0.7	28
111	Preparation of phenolic chiral crown ethers and podands and their enantiomer recognition ability toward secondary amines. Tetrahedron: Asymmetry, 2003, 14, 555-566.	1.8	28
112	Highly Effective and Reversible Control of the Rocking Rates of Rotaxanes by Changes to the Size of Stimulusâ€Responsive Ring Components. Chemistry - A European Journal, 2008, 14, 5803-5811.	1.7	28
113	Molecular pentagonal tiling: self-assemblies of pentagonal-shaped macrocycles at liquid/solid interfaces. CrystEngComm, 2011, 13, 5551.	1.3	28
114	Chelation-controlled regioselective epoxide–carbonyl rearrangement: a ring enlargement route to (±)-modhephene. Journal of the Chemical Society Chemical Communications, 1984, .	2.0	27
115	Synthesis, conformation, and structure of 8,11-bis(methoxycarbonyl)[6]paracyclophane. Journal of Organic Chemistry, 1987, 52, 2639-2644.	1.7	27
116	Preparation of homochiral phenolic crown ether having chiral subunits derived from (1R,2S)-cis-1,2,3,4-tetrahydronaphthalene-1,2-diol: temperature-dependent enantioselectivity in complexations with neutral amines. Tetrahedron: Asymmetry, 1997, 8, 2585-2595.	1.8	27
117	Novel Self-Assembly ofm-Xylylene Type Dithioureas by Head-to-Tail Hydrogen Bonding. Journal of Organic Chemistry, 1998, 63, 7481-7489.	1.7	27
118	Chiral recognition of secondary amines by using chiral crown ether and podand. Tetrahedron Letters, 2002, 43, 8539-8542.	0.7	27
119	Role of pseudopolymorphism on concentration dependent competitive adsorption at a liquid/solid interface. Chemical Communications, 2010, 46, 9125.	2.2	27
120	Improvement of enantioselectivity in kinetic resolution of a primary alcohol through lipase-catalyzed transesterification by using a chiral acyl donor. Tetrahedron: Asymmetry, 2000, 11, 1199-1210.	1.8	26
121	Selfâ€Assembled Monolayers of Alkoxyâ€&ubstituted Octadehydrodibenzo[12]annulenes on a Graphite Surface: Attempts at <i>peri</i> â€Benzopolyacene Formation by Onâ€&urface Polymerization. Chemistry - A European Journal, 2010, 16, 8319-8328.	1.7	26
122	Porous Self-Assembled Molecular Networks as Templates for Chiral-Position-Controlled Chemical Functionalization of Graphitic Surfaces. Journal of the American Chemical Society, 2020, 142, 7699-7708.	6.6	26
123	A new strategy for construction of angularly fused tricyclic ring systems. Transannular bond formation of bicyclic enones via photochemical intramolecular hydrogen abstraction. Tetrahedron Letters, 1984, 25, 3895-3896.	0.7	25
124	Total Synthesis of (.+)-Tetramethylmediterraneol B. Journal of Organic Chemistry, 1995, 60, 3318-3333.	1.7	25
125	Chiral recognition in NMR spectroscopy using crown ethers and their ytterbium(III) complexes. Analytical and Bioanalytical Chemistry, 2004, 378, 1536-1547.	1.9	25
126	Depression of the Apparent Chiral Recognition Ability Obtained in the Host–Guest Complexation Systems by Electrospray and Nano-Electrospray Ionization Mass Spectrometry. European Journal of Mass Spectrometry, 2004, 10, 27-37.	0.5	25

#	Article	IF	CITATIONS
127	Chiral recognition in molecular complexation for the crown ether–amino ester system. A facile FAB mass spectrometric approach. Journal of the Chemical Society Chemical Communications, 1994, , 2497-2498.	2.0	24
128	Preparation of homochiral phenolic crown ethers containing para-substituted phenol moiety and chiral subunits derived from (S)-1-phenylethane-1,2-diol: their chiral recognition behaviour in complexation with neutral amines. Tetrahedron: Asymmetry, 1997, 8, 873-882.	1.8	24
129	Facile Intramolecular Cyclization in Oxidative Coupling of Acetylenes Linked to 1,3-Positions of Benzene:Â Strained [12]Metacyclophanedienetetrayne System. Journal of Organic Chemistry, 2003, 68, 3330-3332.	1.7	24
130	NMR studies of bond order in distorted aromatic systems. Journal of the American Chemical Society, 1990, 112, 7537-7540.	6.6	23
131	A Clue to Elusive Macrocycles:Â Unusually Facile, Spontaneous Polymerization of a Hexagonal Diethynylbenzene Macrocycle. Journal of Organic Chemistry, 2006, 71, 401-404.	1.7	22
132	Electrophilic Transannular Cyclization of Octadehydrodibenzo[12]annulene Reexamined: Indication of the Formation of Both <i>anti-</i> and <i>syn-</i> Indenofluorenes. Journal of Organic Chemistry, 2011, 76, 9116-9121.	1.7	22
133	Efficient screening of 2D molecular polymorphs at the solution–solid interface. Nanoscale, 2015, 7, 5344-5349.	2.8	22
134	Complexation between novel cyclophane host and polar guest by hydrogen bonding. Tetrahedron Letters, 1987, 28, 3825-3826.	0.7	21
135	Temperature Dependence of Enantioselectivity in Complexations of Optically Active Phenolic Crown Ethers with Chiral Amines in Solution Analytical Sciences, 1998, 14, 175-182.	0.8	21
136	Generation and Characterization of Highly Strained Dibenzotetrakisdehydro[12]- and Dibenzopentakisdehydro[14]annulenes. Journal of Organic Chemistry, 2005, 70, 1853-1864.	1.7	21
137	Syntheses and Photophysical Properties of Boomerang-shaped Bis(dehydrobenzo[12]annulene) and Trapezoid-shaped Tris(dehydrobenzo[12]annulene). Chemistry Letters, 2007, 36, 838-839.	0.7	21
138	Hexagonal Molecular Tiling by Hexagonal Macrocycles at the Liquid/Solid Interface: Structural Effects on Packing Geometry. Langmuir, 2017, 33, 12453-12462.	1.6	21
139	A novel synthesis of (±)-descarboxyquadrone. Tetrahedron Letters, 1984, 25, 557-560.	0.7	20
140	Acid-catalyzed rearrangement of [m.3.2]propellanols. Journal of Organic Chemistry, 1985, 50, 488-493.	1.7	20
141	Preparation and enantiomer recognition behaviour of azophenolic crown ethers containing cis-cyclohexane-1,2-diol as the chiral centre. Journal of the Chemical Society Perkin Transactions 1, 1995, , 213.	0.9	20
142	Nucleophilic Substitution Accompanying Carbon–Carbon Bond Cleavage Assisted by a Nitro Group. Bulletin of the Chemical Society of Japan, 2007, 80, 2413-2417.	2.0	20
143	Direct dendronization of polystyrenes using dendritic diarylcarbenium ion pools. Chemical Communications, 2011, 47, 5575-5577.	2.2	20
144	Synthesis of 4-Substituted 3,5-Dinitro-1,4-dihydropyridines by the Self-Condensation of β-Formyl-β-nitroenamine. Journal of Organic Chemistry, 2014, 79, 2163-2169.	1.7	20

#	Article	IF	CITATIONS
145	Preparation of homochiral crown ether containing (S)-1-(1-adamantyl)ethane-1,2-diol as a chiral subunit and its enantioselective complexation with an organic ammonium cation. Tetrahedron: Asymmetry, 1994, 5, 1549-1558.	1.8	19
146	Preparation and enantiomer recognition of chiral azophenolic crown ethers having three chiral barriers on each of the homotopic faces. Tetrahedron: Asymmetry, 1995, 6, 1873-1876.	1.8	19
147	Synthesis, Characterization, and Molecular Structure of [6](9,10)Anthracenophane and Its Peri-Substituted Derivatives:A The Smallest 9,10-Bridged Anthracenes. Journal of the American Chemical Society, 1996, 118, 9488-9497.	6.6	19
148	Preparation of optically active azophenolic crown ethers containing 1-phenylethane-1,2-diol and 2,4-dimethyl-3-oxapentane-1,5-diol as a chiral subunit: temperature-dependent enantiomer selectivity in the complexation with chiral amines 1. Journal of the Chemical Society Perkin Transactions 1, 1997, , 3227-3236.	0.9	19
149	Size-Selective Formation of C78 Fullerene from a Three-Dimensional Polyyne Precursor. Chemistry - A European Journal, 2005, 11, 1603-1609.	1.7	19
150	Supramolecular Method for the Determination of Absolute Configuration of Chiral Compounds:Â Theoretical Derivatization and a Demonstration for a Phenolic Crown Etherâ^'2-Amino-1-ethanol System. Analytical Chemistry, 2007, 79, 6295-6302.	3.2	19
151	Molecular Propellers that Consist of Dehydrobenzo[14]annulene Blades. Chemistry - A European Journal, 2012, 18, 12814-12824.	1.7	19
152	Structural Insights into the Mechanism of Chiral Recognition and Chirality Transfer in Host–Guest Assemblies at the Liquid–Solid Interface. Journal of Physical Chemistry C, 2018, 122, 8228-8235.	1.5	19
153	Reversing the Handedness of Selfâ€Assembled Porous Molecular Networks through the Number of Identical Chiral Centres. Angewandte Chemie - International Edition, 2019, 58, 7733-7738.	7.2	19
154	CHELATION-CONTROLLED REGIOSELECTIVE EPOXIDE-CARBONYL REARRANGEMENT OF 1-OXASPIROHEXANE DERIVATIVES. Chemistry Letters, 1985, 14, 1437-1440.	0.7	18
155	Formylnitroenamines: useful building blocks for nitrated pyridones and aminopyridines with functional groups. Organic and Biomolecular Chemistry, 2009, 7, 325-334.	1.5	18
156	Square Tiling by Square Macrocycles at the Liquid/Solid Interface: Coâ€crystallisation with One―or Twoâ€Dimensional Order. Chemistry - A European Journal, 2015, 21, 6806-6816.	1.7	18
157	Complex Chiral Induction Processes at the Solution/Solid Interface. Journal of Physical Chemistry C, 2016, 120, 17444-17453.	1.5	18
158	Odd–Even Effects in Chiral Phase Transition at the Liquid/Solid Interface. Journal of Physical Chemistry C, 2017, 121, 10430-10438.	1.5	18
159	Antiproliferating polyquinanes. V Di- and triquinanes involving .ALPHAmethylene or .ALPHAalkylidene cyclopentanone, cyclopentanone, and .GAMMAlactone systems Chemical and Pharmaceutical Bulletin, 1987, 35, 617-631.	0.6	17
160	Synthesis and molecular structure of 1,4,5,8-tetramethyl[6](9,10)anthracenophane: the smallest 9,10-bridged anthracene. Journal of the American Chemical Society, 1993, 115, 11604-11605.	6.6	17
161	Preparation of homochiral azophenolic crown ethers containing 1-phenylethane-1,2-diol and 2,4-dimethyl-3-oxapentane-1,5-diol as a chiral subunit: Enantiomer recognition behaviour towards chiral 2-aminoethanol derivatives. Tetrahedron: Asymmetry, 1997, 8, 19-22.	1.8	17
162	Synthesis and Anion Binding Ability of Metacyclophane-Based Cyclic Thioureas. Chemistry Letters, 1998, 27, 835-836.	0.7	17

#	Article	IF	CITATIONS
163	Formation of a non-crystalline bimolecular porous network at a liquid/solid interface. Chemical Communications, 2011, 47, 11459.	2.2	17
164	Ordering of Molecules with ï€-Conjugated Triangular Core by Switching Hydrogen Bonding and van der Waals Interactions. Journal of Physical Chemistry C, 2012, 116, 17082-17088.	1.5	17
165	Synthesis and physical properties of zethrene derivatives bearing donor/acceptor substituents at 7,14-positions. Organic and Biomolecular Chemistry, 2013, 11, 8256.	1.5	17
166	Phase selectivity triggered by nanoconfinement: the impact of corral dimensions. Chemical Communications, 2019, 55, 2226-2229.	2.2	17
167	Synthesis and Properties of Bridgehead-substituted Bicyclo[n.2.2] Bridgehead Alkenes. Bulletin of the Chemical Society of Japan, 1981, 54, 1474-1480.	2.0	16
168	Temperature dependent reversal of enantiomer selectivity in the complexation of optically active phenolic crown ethers with chiral amines. Chemical Communications, 1996, , 2749.	2.2	16
169	Cyclophynes. , 2005, , 1-40.		16
170	Conductance of Single Triangular Dehydrobenzo[12]annulene Derivative Bridged between Au Electrodes. Chemistry Letters, 2010, 39, 788-789.	0.7	16
171	Harnessing by a diacetylene unit: a molecular design for porous two-dimensional network formation at the liquid/solid interface. Chemical Communications, 2014, 50, 2831.	2.2	16
172	Facile Synthesis of 3,3′-Disubstituted 2,2′-Binaphthyls by Transition-metal-catalyzed Double Benzannulation. Chemistry Letters, 2014, 43, 883-884.	0.7	16
173	DIDECALINO-14-CROWN-4. HIGHLY LITHIUM ION SELECTIVE EXTRACTANT. Chemistry Letters, 1986, 15, 713-714.	0.7	15
174	Decalino-14-crown-4. New Type of Lithium Ion Selective Ionophore. Bulletin of the Chemical Society of Japan, 1988, 61, 4164-4166.	2.0	15
175	Novel self-assembly of m-xylylene type dithioureas. Tetrahedron Letters, 1997, 38, 4791-4794.	0.7	15
176	On the Thermal Stability of Aryl Groups Chemisorbed on Graphite. Journal of Physical Chemistry C, 2020, 124, 1980-1990.	1.5	15
177	Chirality in porous self-assembled monolayer networks at liquid/solid interfaces: induction, reversion, recognition and transfer. Chemical Communications, 2021, 57, 962-977.	2.2	15
178	Highly Selective Lithium Ion Electrode Based on Decalino-14-Crown-4. Analytical Letters, 1993, 26, 49-54.	1.0	14
179	Preparation and enantiomer recognition behaviour of azophenolic crown ethers containing cis-1-phenylcyclohexane-I,2-diol as the chiral subunit and 2,4-dinitrophenylazophenol as the chromophore. Journal of the Chemical Society Perkin Transactions 1, 1996, , 383.	0.9	14
180	Solvophobically driven self-association of a butadiyne-bridged pyridine macrocycle. Tetrahedron, 2008, 64, 11490-11494.	1.0	14

#	Article	IF	CITATIONS
181	Efficient molecular recognition based on nonspecific van der Waals interaction at the solid/liquid interface. Chemical Communications, 2014, 50, 11946-11949.	2.2	14
182	Area-selective passivation of sp ² carbon surfaces by supramolecular self-assembly. Nanoscale, 2017, 9, 5188-5193.	2.8	14
183	How Does Chemisorption Impact Physisorption? Molecular View of Defect Incorporation and Perturbation of Two-Dimensional Self-Assembly. Journal of Physical Chemistry C, 2018, 122, 24046-24054.	1.5	14
184	Synthesis and Structure of [6](1,4)Naphthalenophane and [6](1,4)Anthracenophane and Their Peri-Substituted Derivatives. Bulletin of the Chemical Society of Japan, 1997, 70, 1935-1942.	2.0	13
185	Temperature dependent inversion of enantiomer selectivity in the complexation of optically active azophenolic crown ethers containing alkyl substituents as chiral barriers with chiral amines 1. Journal of the Chemical Society Perkin Transactions II, 1997, , 1649-1658.	0.9	13
186	Flash vacuum pyrolysis of 1,6-diphenyl-1,5-hexadien-3-ynes: tandem diaryldienyne cyclizations to form chrysene. Tetrahedron Letters, 2002, 43, 5269-5272.	0.7	13
187	Asymmetric [2+2] photocycloaddition of cycloalkenone–cyclodextrin complexes to ethylene. Chirality, 2006, 18, 217-221.	1.3	13
188	Oxidative Cyclodimerization After Tandem Cyclization of Dehydrobenzo[14]annulenes Induced by Alkyllithium. Angewandte Chemie - International Edition, 2013, 52, 4184-4188.	7.2	13
189	Direct observation of adsorption geometry for the van der Waals adsorption of a single π-conjugated hydrocarbon molecule on Au(111). Journal of Chemical Physics, 2014, 140, 074709.	1.2	13
190	Synthesis of bicyclo[6.2.2] bridgehead dienes. Tetrahedron Letters, 1982, 23, 537-538.	0.7	12
191	A NEW EFFICIENT SYNTHESIS AND REARRANGEMENTS OF [6]PARACYCLOPHANE. Chemistry Letters, 1983, 12, 1645-1646.	0.7	12
192	Synthesis ofcis-transoid-cis-andcis-cisoid-cis-Tricyclo[6.3.0.02,6]undecan-1-ols. Bulletin of the Chemical Society of Japan, 1985, 58, 1613-1614.	2.0	12
193	Novel photocycloaddition of 2-naphthols to ethylene in the presence of Lewis acid. Tetrahedron Letters, 1989, 30, 6193-6194.	0.7	12
194	Formation and Characterization of Highly Strained Dibenzopentakisdehydro[14]annulene and Theoretical Study on Its Aromaticity. Chemistry Letters, 2004, 33, 620-621.	0.7	12
195	Carbon-Rich Compounds: Acetylene-Based Carbon Allotropes. , 2005, , 387-426.		12
196	PtCl ₂ -Catalyzed Cyclization of <i>o</i> -Diethynylbenzene Derivatives Triggered by Intramolecular Nucleophilic Attack. Synthetic Communications, 2011, 41, 1077-1087.	1.1	12
197	Synthesis and structure of 1,4,5,8-tetraethynylnaphthalene derivatives. Chemical Communications, 2012, 48, 7841.	2.2	12
198	Self-Assembled Dehydro[24]annulene Monolayers at the Liquid/Solid Interface: Toward On-Surface Synthesis of Tubular π-Conjugated Nanowires. Langmuir, 2016, 32, 5532-5541.	1.6	12

#	Article	IF	CITATIONS
199	Hierarchical two-dimensional molecular assembly through dynamic combination of conformational states at the liquid/solid interface. Chemical Science, 2020, 11, 9254-9261.	3.7	12
200	Preparation and enantiomer recognition behaviour of crown ethers containing cis-1-phenylcyclohexane-1,2-diol and trans-1,2-diphenylcyclohexane-1,2-diol as a chiral subunit. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1073.	0.9	11
201	A new entry to [6](1,4)naphthalenophane and [6](1,4)anthracenophane: Synthesis of peri-substituted derivatives. Tetrahedron Letters, 1995, 36, 939-942.	0.7	11
202	Gas-Phase Generation of Highly Reactive Hexatriyne-Bridged [6n]Paracyclophynes. Journal of Organic Chemistry, 2005, 70, 6133-6136.	1.7	11
203	Control of Rocking Mobility of Rotaxanes by Size Change of Stimulus-responsive Ring Components. Chemistry Letters, 2007, 36, 810-811.	0.7	11
204	Remarkable Effects of Chirality on Deslipping Reactions of Diastereomeric Rotaxanes and Relevant Mechanism Involving Pre-Equilibrium. Organic Letters, 2009, 11, 145-147.	2.4	11
205	Amplification of enantioselectivity and sensitivity based on non-linear response of molecular wire bearing pseudo-18-crown-6 to chiral amines. Chemical Communications, 2012, 48, 6052.	2.2	11
206	Tuning the size of supramolecular M4L4 tetrahedra by ligand connectivity. Dalton Transactions, 2012, 41, 9316.	1.6	11
207	Alkoxy Chain Number Effect on Self-Assembly of a Trigonal Molecule at the Liquid/Solid Interface. Journal of Physical Chemistry C, 2019, 123, 27020-27029.	1.5	11
208	Stereospecific Epitaxial Growth of Bilayered Porous Molecular Networks. Journal of the American Chemical Society, 2020, 142, 8662-8671.	6.6	11
209	Synthesis and Characterization of [6](9,10)Anthracenophane. Journal of Organic Chemistry, 1994, 59, 5516-5517.	1.7	10
210	Formation of naphthodithiophene isomers by flash vacuum pyrolysis of 1,6-di(2-thienyl)- and 1,6-di(3-thienyl)-1,5-hexadien-3-ynes. Comptes Rendus Chimie, 2009, 12, 378-384.	0.2	10
211	Porous molecular networks formed by the self-assembly of positively-charged trigonal building blocks at the liquid/solid interfaces. Chemical Communications, 2014, 50, 7683-7685.	2.2	10
212	Chemistry of Anthracene–Acetylene Oligomers XXV: Onâ€5urface Chirality of a Selfâ€Assembled Molecular Network of a Fanâ€Bladeâ€Shaped Anthracene–Acetylene Macrocycle with a Long Alkyl Chain. Chemistry - A European Journal, 2015, 21, 5520-5527.	1.7	10
213	Synthesis and Photophysical Properties of 9,10-Bis(3-aryl-2-naphthyl)anthracenes. Bulletin of the Chemical Society of Japan, 2016, 89, 110-112.	2.0	10
214	Twisted Polycyclic Aromatic Hydrocarbon with a Cyclooctatetraene Core via Formal [4+4] Dimerization of Indenofluorene. Synlett, 2016, 27, 2140-2144.	1.0	10
215	Transfer of chiral information from a chiral solvent to a two-dimensional network. Faraday Discussions, 2017, 204, 215-231.	1.6	10
216	Remarkable Effect of Subtle Structural Change of Chiral Pseudo-18-Crown-6 on Enantiomer-Selectivity in Complexation with Chiral Amino Alcohols. Heterocycles, 2005, 66, 405.	0.4	10

#	Article	IF	CITATIONS
217	Unusual rearrangement of tricyclo[6.3.0.01,4]undecan-5-one. Tetrahedron Letters, 1987, 28, 3979-3980.	0.7	9
218	Thermal [2+2] cycloaddition of benzene derivative. Cycloaddition of (Z)-[6]paracycloph-3-ene with tetracyanoethylene. Tetrahedron Letters, 1987, 28, 2861-2862.	0.7	9
219	A Short Synthesis of (±)-3-Oxosilphinene. Chemistry Letters, 1990, 19, 149-150.	0.7	9
220	Photochemical [2+2] dimerization of [6](1,4)-anthracenophane. Journal of the American Chemical Society, 1991, 113, 5804-5808.	6.6	9
221	Regioselective metalation of [6]paracyclophane with a superbase. Tetrahedron Letters, 1993, 34, 4969-4970.	0.7	9
222	Skeletal Rearrangement of 8-Methylenebicyclo[4.2.0]octan-2-ones with Mercury(II) Perchlorate. Journal of Organic Chemistry, 1995, 60, 6557-6562.	1.7	9
223	Synthesis of azophenolic crown ethers of C s symmetry incorporating cis-1-phenylcyclohexane-1,2-diol residues as a steric barrier and diastereotopic face selectivity in complexation of amines by their diastereotopic faces. Journal of the Chemical Society Perkin Transactions 1, 1995, , 1429.	0.9	9
224	Selective Metallation of 3-Halothiophenes: Practical Methods for the Synthesis of 2-Bromo-3-formylthiophene. Synthetic Communications, 2009, 39, 3315-3323.	1.1	9
225	Chiral Recognition Ability of Crown Ethers toward Organic Amine Compounds: FAB Mass Spectrometry Coupled with the Enantiomer-Labeles Guest Method Journal of the Mass Spectrometry Society of Japan, 2000, 48, 323-332.	0.0	9
226	Stereoselectivity in photocycloaddition of bicyclic enones to olefins. Journal of Organic Chemistry, 1978, 43, 4334-4337.	1.7	8
227	Novel acid-catalysed rearrangement of [4.3.2]- and [5.3.2]-propellanones. Journal of the Chemical Society Chemical Communications, 1982, , 6.	2.0	8
228	Cyclobutyl-cyclopropylcarbinyl type rearrangement of 1-oxaspirohexane derivatives. A new entry to functionalized norcaranes. Tetrahedron Letters, 1986, 27, 2905-2906.	0.7	8
229	Transformation of octadehydrodibenzo[12]annulene to benzonaphthopentalene by successive nucleophilic and electrophilic transannular cyclizations. Tetrahedron, 2014, 70, 8474-8479.	1.0	8
230	Effect of Multiple Interactions on Face-On vs Edge-On Configurations of Butadiyne-Bridged Octadehydrodibenzo[12]annulene Derivatives at the Liquid/Graphite Interface. Journal of Physical Chemistry C, 2015, 119, 15977-15981.	1.5	8
231	Electrostatically Driven Guest Binding in a Self-Assembled Porous Network at the Liquid/Solid Interface. Langmuir, 2018, 34, 6036-6045.	1.6	8
232	Trapping a pentagonal molecule in a self-assembled molecular network: an alkoxylated isosceles triangular molecule does the job. Chemical Communications, 2020, 56, 5401-5404.	2.2	8
233	All-carbon molecules from small-ring propellanes. Advances in Strained and Interesting Organic Molecules, 1999, , 153-184.	1.2	8
234	Photocycloaddition of bicyclic cyclopentenones with cyclohexene. Journal of Organic Chemistry, 1977, 42, 2523-2524.	1.7	7

#	Article	IF	CITATIONS
235	Chromic acid oxidation of [n.3.2]propellanols. Journal of Organic Chemistry, 1979, 44, 639-640.	1.7	7
236	Stereoselectivity in Hydride Reduction of [n.3.2]Propellanones. Bulletin of the Chemical Society of Japan, 1979, 52, 639-640.	2.0	7
237	SYNTHESIS OF 2-METHYLENETRICYCLO[4.3.2.01,5]UNDECAN-3-ONES INVOLVING A SPIRO CYCLOPROPANE RING. Chemistry Letters, 1985, 14, 1565-1568.	0.7	7
238	AN ALTERNATIVE SYNTHESIS OF (\hat{A} ±)-DESCARBOXYQUADRONE. Chemistry Letters, 1986, 15, 507-510.	0.7	7
239	Unusual reactions of [6](1,4)naphthalenophane and [6](1,4)anthracenophane with dienophiles. Tetrahedron Letters, 1991, 32, 359-362.	0.7	7
240	Approaches to Size-selective Formation of Fullerenes by Cyclization of Highly Reactive Polyyne Chains. Chemistry Letters, 2005, 34, 1574-1579.	0.7	7
241	Design of efficient sergeant molecules for chiral induction in nano-porous supramolecular assemblies. RSC Advances, 2015, 5, 6642-6646.	1.7	7
242	Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annuleneâ€withinâ€anâ€Annulene Models. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
243	Oxidative decarboxylation of [n.2.2]propellane carboxylic acids with lead tetraacetate. rearrangement approach to bicyclo [n.2.2.]bridgehead alkenes Tetrahedron Letters, 1979, 20, 3855-3856.	0.7	6
244	Synthesis and reactions of 5,6,11,12-tetrahydro-5,12;6,11-diethenodibenzo-[α,e]cyclo-octene (pp′-dinaphthalene). Journal of the Chemical Society Chemical Communications, 1981, , 786-787.	2.0	6
245	TRIDECALINO-18-CROWN-6. SYNTHESIS OF CYLINDRICAL CROWN ETHER. Chemistry Letters, 1986, 15, 455-458.	0.7	6
246	Homochiral ligands derived from cis-1-phenylcyclohexane-1,2-diol and cis-2-azido-2-phenylcyclohexanol. Tetrahedron: Asymmetry, 1997, 8, 3735-3744.	1.8	6
247	Synthesis and Characterization of Cyclopentadienone-annelated Hexadehydrodibenzo[12]annulene. Chemistry Letters, 2006, 35, 168-169.	0.7	6
248	3-(2-Aminocarbonylphenyl)propanoic acid analogs as potent and selective EP3 receptor antagonists. Part 3: Synthesis, metabolic stability, and biological evaluation of optically active analogs. Bioorganic and Medicinal Chemistry, 2010, 18, 3212-3223.	1.4	6
249	Chemistry of Anthracene–Acetylene Oligomers XX: Synthesis, Structures, and Selfâ€Association of Anthracene–Anthraquinone Cyclic Compounds with Ethynylene Linkers. Chemistry - an Asian Journal, 2012, 7, 935-943.	1.7	6
250	Alkoxylated dehydrobenzo[12]annulene on Au(111): from single molecules to quantum dot molecular networks. Chemical Communications, 2015, 51, 10917-10920.	2.2	6
251	On the stability of surface-confined nanoporous molecular networks. Journal of Chemical Physics, 2015, 142, 101932.	1.2	6
252	Construction of cyclic arrays of Zn-porphyrin units and their guest binding at the solid–liquid interface. Chemical Communications, 2016, 52, 14419-14422.	2.2	6

#	Article	IF	CITATIONS
253	On‣urface Evolution of meso â€Isomerism in Twoâ€Dimensional Supramolecular Assemblies. Angewandte Chemie - International Edition, 2019, 58, 9611-9618.	7.2	6
254	Supramolecular Metallacycles and Their Binding of Fullerenes. Chemistry - A European Journal, 2020, 26, 3609-3613.	1.7	6
255	Synthesis of dibenzo[4.4.2.2]buttaflanes. Journal of the Chemical Society Chemical Communications, 1982, , 82.	2.0	5
256	Photochemical Lumiketone-Type Rearrangement of 3-Methoxyphenol Promoted by AlBr3. Bulletin of the Chemical Society of Japan, 1991, 64, 3468-3470.	2.0	5
257	The synthesis of azophenolic crown ethers of Cs symmetry incorporating cis-1-phenylcyclohexane-1,2-diol residues and diastereotopic face selectivity in complexation of ethanolamine by their diastereotopic faces. Journal of the Chemical Society Chemical Communications. 1994 711.	2.0	5
258	Remarkable effect of hydrogen bonding between ring and axle components on deslipping reactions of rotaxanes. Tetrahedron Letters, 2009, 50, 3443-3445.	0.7	5
259	Novel chiral recognition beyond the limitation due to the law of mass action: highly enantioselective chiral sensing based on non-linear response in phase transition events. Chemical Communications, 2011, 47, 6617.	2.2	5
260	Electrophilic Tandem Transannular Cyclization of Octadehydrotribenzo[14]annulene to Benzodiindenocyclooctatetraenes. Chemistry Letters, 2014, 43, 1210-1212.	0.7	5
261	Generation of Aromatic (Dehydro)benzoannulene Dications Stabilized by Platinum Catecholate Complexes. ChemPlusChem, 2017, 82, 1052-1056.	1.3	5
262	Computational insight into the origin of unexpected contrast in chiral markers as revealed by STM. Nanoscale, 2018, 10, 1680-1694.	2.8	5
263	Electrostatically Driven Guest Binding in Self-Assembled Molecular Network of Hexagonal Pyridine Macrocycle at the Liquid/Solid Interface: Symmetry Breaking Induced by Coadsorbed Solvent Molecules. Langmuir, 2019, 35, 15051-15062.	1.6	5
264	Crystal Structures of Tetramesityl‣ubstituted Tetracyclopenta[<i>def,jkl,pqr,vwx</i>]tetraphenylene. European Journal of Organic Chemistry, 2021, 2021, 3528-3534.	1.2	5
265	EFFECT OF ALKYL SUBSTITUENTS ON CYCLOBUTYL-CYCLOPROPYLCARBINYL TYPE REARRANGEMENT OF 2-OXABICYCLO[4.2.0]OCTAN-3-ONES. Chemistry Letters, 1978, 7, 1027-1028.	0.7	4
266	The baeyer-villiger oxidation via carboration, oxidation of 7-acetyl[4.2.1]- and 7-acetyl[4.2.2]propellanes. Tetrahedron Letters, 1983, 24, 3639-3642.	0.7	4
267	Synthesis of large ring proton cryptate tridecalino [2.2.2] cryptand⊃2hl. Tetrahedron Letters, 1986, 27, 2465-2466.	0.7	4
268	Synthesis of Tricarbonyl (η6-[6]paracyclophane)chromium. Smallest-Bridged Paracyclophane-Metal Complex. Chemistry Letters, 1989, 18, 1549-1550.	0.7	4
269	Thermal [2 + 2] cycloaddition of (z)-[6]paracycloph-3-ene with tetracyanoethylene. Journal of Physical Organic Chemistry, 1996, 9, 1-6.	0.9	4
270	ACID DISSOCIATION BEHAVIOR OF 2, 3- AND 2, 3, 9,IO-METHYL- OR CYCLOHEXYL-SUBSTITUTED CYCLAMS, COMPLEXESINTERACTION EFFECT ON THE LIGAND-FIELD. Journal of Coordination Chemistry, 1997, 42, 143-155.	0.8	4

#	Article	IF	CITATIONS
271	Coadsorption of Tb ^{III} –Porphyrin Double-decker Single-molecule Magnets in a Porous Molecular Network: Toward Controlled Alignment of Single-molecule Magnets on a Carbon Surface. Chemistry Letters, 2016, 45, 286-288.	0.7	4
272	Novel Aromatics: From Synthesis to Applications. ChemPlusChem, 2017, 82, 943-944.	1.3	4
273	Quinodimethanes Incorporated in Non‑Benzenoid Aromatic or Antiaromatic Frameworks. Topics in Current Chemistry Collections, 2018, , 107-168.	0.2	4
274	Reversing the Handedness of Selfâ€Assembled Porous Molecular Networks through the Number of Identical Chiral Centres. Angewandte Chemie, 2019, 131, 7815-7820.	1.6	4
275	Synthesis and Lithium Ion-Selectivity of 2-Phenylcyclohexano-and 2,3-Diphenylcyclohexano-14-crown-4 Derivatives. Chemistry Letters, 1995, 24, 831-832.	0.7	3
276	Synthesis and Facile Rearrangement of 10,10-Dicarbonyl-substituted [4.3.1]Propellane Derivatives. Chemistry Letters, 2003, 32, 398-399.	0.7	3
277	An Approach to the Synthesis of a Twoâ€Dimensional Polymer Using a Preorganized Hostâ€Guest Network by Selfâ€Assembly at the Liquid/Solid Interface. ChemNanoMat, 2020, 6, 550-559.	1.5	3
278	Synthesis of Propellanes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1981, 39, 1163-1171.	0.0	3
279	BICYCLO[n.2.2]BRIDGEHEAD ALKENES, SYNTHESIS AND ELECTROPHILIC ADDITION OF ACETIC ACID. Chemistry Letters, 1980, 9, 691-692.	0.7	2
280	Solvolysis of bridgehead chlorides with strained bridgehead double bond Tetrahedron Letters, 1980, 21, 5025-5026.	0.7	2
281	Synthesis ofcis-transoid-cis- andcis-cisoid-cis-Tetracyclo[6.6.0.01,11.03,7]tetradecan-12-ones via Novel Rearrangement. Bulletin of the Chemical Society of Japan, 1990, 63, 3039-3041.	2.0	2
282	Thermal Valence Isomerization of Hemi-Dewar Type Isomers of [6](1,4)Naphthaleno- and [6](1,4)Anthracenophanes. Chemistry Letters, 1990, 19, 1587-1590.	0.7	2
283	Properties of dendritic and cyclic thiourea derivatives as neutral carriers for anion sensors. Bunseki Kagaku, 2004, 53, 943-952.	0.1	2
284	Syntheses and stimuli-responsive rocking motions of a rotaxane bearing different stoppers. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 184-189.	2.0	2
285	Synthesis and structures of [2 _{<i>n</i>}](2,7)naphthalenophanes (<i>n</i> = 2–4). Canadian Journal of Chemistry, 2017, 95, 445-449.	0.6	2
286	Synthesis and Unusual Properties of Highly Strained Anthracenophanes Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 610-618.	0.0	2
287	Formation and Control of Porous Two-Dimensional Molecular Self-Assembly at Solid-Liquid Interfaces. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 1255-1266.	0.0	2
288	SYNTHESIS OF TRICYCLO[5.3.2.01,6]DODECENONES. Chemistry Letters, 1985, 14, 305-306.	0.7	1

#	Article	IF	CITATIONS
289	[2.2.2.2](2,7)â€lâ€Bromonaphthalenophane from a Desymmetrized Building Block Bearing Electrophilic and Masked Nucleophilic Functionalities. Helvetica Chimica Acta, 2019, 102, e1800242.	1.0	1
290	9,10-Dihydro- <i>as</i> -indacenodithiophenes: Isomers with an <i>as</i> -Indacene Core. Journal of Organic Chemistry, 2019, 84, 3927-3939.	1.7	1
291	Efficient Synthesis of Biindenylidene Derivatives via a Domino-Heck-Type Double Cyclization of Diaryldienynes ChemInform, 2004, 35, no.	0.1	0
292	Expanded Radialenes with Bicyclo[4.3.1]decatriene Units: New Precursors to Cyclo[n]carbons ChemInform, 2004, 35, no.	0.1	0
293	Convenient Synthesis and Photophysical Properties of Tetrabenzopentakisdehydro[12]annuleno[12]annulene ChemInform, 2005, 36, no.	0.1	0
294	Rücktitelbild: Indeno[2,1-b]fluorene: A 20-ï€-Electron Hydrocarbon with Very Low-Energy Light Absorption (Angew. Chem. 23/2013). Angewandte Chemie, 2013, 125, 6228-6228.	1.6	0
295	Innentitelbild: Tetracyclopenta[def,jkl,pqr,vwx]tetraphenylene: A Potential Tetraradicaloid Hydrocarbon (Angew. Chem. 7/2015). Angewandte Chemie, 2015, 127, 2000-2000.	1.6	0
296	Onâ€Surface Evolution of meso â€Isomerism in Twoâ€Dimensional Supramolecular Assemblies. Angewandte Chemie, 2019, 131, 9713-9720.	1.6	0
297	Cyclic Polyynes. , 2005, , 99-126.		0
298	A Lucky Encounter that Triggered a Leap. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 162-165.	0.0	0
299	Innentitelbild: Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annuleneâ€withinâ€anâ€Annulene Models (Angew. Chem. 6/2022). Angewandte Chemie, 2022, 134, .	1.6	0
300	[12.12]Paracyclophanedodecaynes C(36)H(8) and C(36)Cl(8): The Smallest Paracyclophynes and Their Transformation into the Carbon Cluster Ion C(36)(-) This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education,Science,Sports and Culture of Japan. Y.T. is grateful to Shin-Etsu Chemical Co. for the generous gift of an organosilicon reagent Angewandte	7.2	0
301	Čhemie - International Edition, 2001, 40, 4072-4074. Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annuleneâ€withinâ€anâ€Annulene Models. Angewandte Chemie, 2022, 134, .	1.6	0