You-Xuan Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3255121/publications.pdf Version: 2024-02-01

YOU-YUAN THENC

#	Article	IF	CITATIONS
1	Molecular self-induced configuration for improving dissymmetry factors in tetradentate platinum(II) enantiomers cycloaddition. Chinese Chemical Letters, 2022, 33, 1459-1462.	4.8	15
2	Fabrication of Circularly Polarized MRâ€TADF Emitters with Asymmetrical Peripheralâ€Lock Enhancing Helical B/Nâ€Doped Nanographenes. Advanced Materials, 2022, 34, e2105080.	11.1	112
3	Green multi-resonance thermally activated delayed fluorescence emitters containing phenoxazine units with highly efficient electroluminescence. Journal of Materials Chemistry C, 2022, 10, 768-773.	2.7	23
4	Fabrication of Circularly Polarized MRâ€TADF Emitters with Asymmetrical Peripheral‣ock Enhancing Helical B/Nâ€Đoped Nanographenes (Adv. Mater. 1/2022). Advanced Materials, 2022, 34, .	11.1	1
5	Efficient circularly polarized thermally activated delayed fluorescence hetero-[4]helicene with carbonyl-/sulfone-bridged triarylamine structures. Journal of Materials Chemistry C, 2022, 10, 4393-4401.	2.7	14
6	Fused Ï€â€Extended Multipleâ€Resonance Induced Thermally Activated Delayed Fluorescence Materials for Highâ€Efficiency and Narrowband OLEDs with Low Efficiency Rollâ€Off. Advanced Optical Materials, 2022, 10, .	3.6	40
7	Circularly Polarized White Organic Lightâ€Emitting Diodes Based on Spiroâ€Type Thermally Activated Delayed Fluorescence Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
8	Efficient and Stable Wideâ€Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phaseâ€Pure Intermediate. Solar Rrl, 2022, 6, .	3.1	11
9	lridium(<scp>iii</scp>) complexes incorporating thieno[2,3- <i>d</i>]pyrimidine units for efficient orange-to-yellow electroluminescence with low efficiency roll-off. Journal of Materials Chemistry C, 2022, 10, 8650-8656.	2.7	6
10	Efficient circularly polarized photoluminescence and electroluminescence of chiral spiro-skeleton based thermally activated delayed fluorescence molecules. Science China Chemistry, 2022, 65, 1347-1355.	4.2	23
11	Highly Efficient Sensitized Chiral Hybridized Local and Chargeâ€Transfer Emitter Circularly Polarized Electroluminescence. Advanced Functional Materials, 2022, 32, .	7.8	24
12	High‣fficiency and Narrowband OLEDs from Blue to Yellow with Ternary Boron/Nitrogenâ€Based Polycyclic Heteroaromatic Emitters. Advanced Optical Materials, 2022, 10, .	3.6	36
13	Frontiers in chiral phosphorescent complexes for circularly polarized electroluminescence. Dalton Transactions, 2022, 51, 9966-9970.	1.6	22
14	A Chiral Dualâ€Core Organoboron Structure Realizes Dualâ€Channel Enhanced Ultrapure Blue Emission and Highly Efficient Circularly Polarized Electroluminescence. Advanced Materials, 2022, 34, .	11.1	54
15	Carbazoleâ€Based Iridium(III) Complexes for Electrophosphorescence with EQE of 32.2% and Low Efficiency Rollâ€Off. Advanced Optical Materials, 2021, 9, 2001390.	3.6	27
16	Design of pyridinylphosphinate-based blue iridium phosphors for high-efficiency organic light-emitting diodes. Dalton Transactions, 2021, 50, 3887-3893.	1.6	7
17	A narrowband blue circularly polarized thermally activated delayed fluorescence emitter with a hetero-helicene structure. Chemical Communications, 2021, 57, 11041-11044.	2.2	44
18	Pyridinylphosphorothioate-based blue iridium(<scp>iii</scp>) complex with double chiral centers for circularly polarized electroluminescence. Journal of Materials Chemistry C, 2021, 9, 5244-5249.	2.7	21

#	Article	IF	CITATIONS
19	Efficient organic light-emitting diodes based on iridium(<scp>iii</scp>) complexes containing indolo[3,2,1- <i>jk</i>]carbazole derivatives with narrow emission bandwidths and low efficiency roll-offs. Journal of Materials Chemistry C, 2021, 9, 8226-8232.	2.7	15
20	Configurationally stable helical tetradentate Pt(<scp>ii</scp>) complexes for organic light-emitting diodes with circularly polarized electroluminescence. Journal of Materials Chemistry C, 2021, 9, 14669-14674.	2.7	11
21	Efficient green electroluminescent devices with low operation voltage and slow efficiency roll-off by utilizing hole transport material as host. Optical Materials, 2021, 112, 110773.	1.7	3
22	Coordination Strategy Driving the Formation of Compact CuSCN Holeâ€Transporting Layers for Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000777.	3.1	11
23	Chiral Spiroâ€Axis Induced Blue Thermally Activated Delayed Fluorescence Material for Efficient Circularly Polarized OLEDs with Low Efficiency Rollâ€Off. Angewandte Chemie, 2021, 133, 8516-8521.	1.6	29
24	Chiral Spiroâ€Axis Induced Blue Thermally Activated Delayed Fluorescence Material for Efficient Circularly Polarized OLEDs with Low Efficiency Rollâ€Off. Angewandte Chemie - International Edition, 2021, 60, 8435-8440.	7.2	107
25	Efficient Circularly Polarized Electroluminescence from Chiral Thermally Activated Delayed Fluorescence Emitters Featuring Symmetrical and Rigid Coplanar Acceptors. Advanced Optical Materials, 2021, 9, 2100017.	3.6	46
26	Simple Synthesis of Red Iridium(III) Complexes with Sulfur-Contained Four-Membered Ancillary Ligands for OLEDs. Molecules, 2021, 26, 2599.	1.7	5
27	Twoâ€Photon Ionization Induced Stable White Organic Long Persistent Luminescence. Angewandte Chemie - International Edition, 2021, 60, 16984-16988.	7.2	48
28	Semitransparent Circularly Polarized Phosphorescent Organic Lightâ€Emitting Diodes with External Quantum Efficiency over 30% and Dissymmetry Factor Close to 10 ^{â^'2} . Advanced Functional Materials, 2021, 31, 2102898.	7.8	60
29	Twoâ€Photon Ionization Induced Stable White Organic Long Persistent Luminescence. Angewandte Chemie, 2021, 133, 17121-17125.	1.6	30
30	Chiral Thermally Activated Delayed Fluorescence Materials Based on <i>R</i> / <i>S</i> â€ <i>N</i> ² , <i>N</i> ² â€2â€Diphenylâ€{1,1â€2â€binaphthalene]â€ Donor with Narrow Emission Spectra for Highly Efficient Circularly Polarized Electroluminescence. Advanced Functional Materials, 2021, 31, 2103875.	2,2′â€o 7.8	liamine 61
31	Blue Axially Chiral Biphenyl Based Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized OLEDs. Advanced Optical Materials, 2021, 9, 2100596.	3.6	21
32	A Series of Fused Carbazole/Carbonyl Based Blue to Yellowâ€Green Thermally Activated Delayed Fluorescence Materials for Efficient Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100784.	3.6	26
33	Organic Long Persistent Luminescence Through In Situ Generation of Cuprous(I) Ion Pairs in Ionic Solids. Angewandte Chemie, 2021, 133, 24642-24647.	1.6	6
34	Organic Long Persistent Luminescence Through In Situ Generation of Cuprous(I) Ion Pairs in Ionic Solids. Angewandte Chemie - International Edition, 2021, 60, 24437-24442.	7.2	19
35	Redox-active benzimidazolium sulfonamides as cationic thiolating reagents for reductive cross-coupling of organic halides. Chemical Science, 2021, 12, 2509-2514.	3.7	18
36	Interfacial engineering of CuSCN-based perovskite solar cells <i>via</i> PMMA interlayer toward enhanced efficiency and stability. New Journal of Chemistry, 2021, 45, 13168-13174.	1.4	20

#	Article	IF	CITATIONS
37	Efficient organic light-emitting diodes with narrow emission bandwidths based on iridium(<scp>iii</scp>) complexes with a pyrido[3′,2′:4,5]pyrrolo[3,2,1- <i>jk</i>]carbazole unit. Materials Chemistry Frontiers, 2021, 5, 6951-6959.	3.2	9
38	Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers. Journal of the American Chemical Society, 2021, 143, 18527-18535.	6.6	132
39	Chiral Thermally Activated Delayed Fluorescence Emitters-Based Efficient Circularly Polarized Organic Light-Emitting Diodes Featuring Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 56413-56419.	4.0	16
40	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Science China Chemistry, 2021, 64, 2060-2104.	4.2	248
41	Efficient blue, green and red iridium(<scp>iii</scp>) complexes with noncovalently-linked pyrazole/pyrazolide rings for organic light-emitting diodes. New Journal of Chemistry, 2020, 44, 530-536.	1.4	3
42	Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. Journal of the American Chemical Society, 2020, 142, 17756-17765.	6.6	174
43	The electron inductive effect of dual non-conjugated trifluoromethyl acceptors for highly efficient thermally activated delayed fluorescence OLEDs. Dyes and Pigments, 2020, 183, 108705.	2.0	6
44	Enantiomeric MOF Crystals Using Helical Channels as Palettes with Bright White Circularly Polarized Luminescence. Advanced Materials, 2020, 32, e2002914.	11.1	125
45	Axially Chiral Biphenyl Compoundâ€Based Thermally Activated Delayed Fluorescent Materials for Highâ€Performance Circularly Polarized Organic Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2000804.	5.6	71
46	Rational Design of the Platinahelicene Enantiomers for Deep-Red Circularly Polarized Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 501.	1.8	14
47	Photoresponsive Propellerâ€like Chiral AIE Copper(I) Clusters. Angewandte Chemie, 2020, 132, 5374-5378.	1.6	26
48	Enantiomorphic Perovskite Ferroelectrics with Circularly Polarized Luminescence. Journal of the American Chemical Society, 2020, 142, 4756-4761.	6.6	208
49	Circularly Polarized Luminescence from Chiral Tetranuclear Copper(I) Iodide Clusters. Journal of Physical Chemistry Letters, 2020, 11, 1255-1260.	2.1	79
50	Photoresponsive Propellerâ€like Chiral AIE Copper(I) Clusters. Angewandte Chemie - International Edition, 2020, 59, 5336-5340.	7.2	137
51	Visibleâ€Lightâ€Mediated Click Chemistry for Highly Regioselective Azide–Alkyne Cycloaddition by a Photoredox Electronâ€Transfer Strategy. Chemistry - A European Journal, 2020, 26, 5694-5700.	1.7	35
52	Organic and quantum-dot hybrid white LEDs using a narrow bandwidth blue TADF emitter. Journal of Materials Chemistry C, 2020, 8, 10831-10836.	2.7	5
53	Multicolor Circularly Polarized Photoluminescence and Electroluminescence with 1,2-Diaminecyclohexane Enantiomers. ACS Applied Materials & Interfaces, 2020, 12, 23172-23180.	4.0	48
54	Aggregationâ€Induced Emissive and Circularly Polarized Homogeneous Sulfonoâ€Î³â€AApeptide Foldamers. Advanced Optical Materials, 2020, 8, 1902122.	3.6	24

#	Article	IF	CITATIONS
55	Four-membered red iridium(<scp>iii</scp>) complexes with Ir–S–C–S structures for efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 7411-7416.	2.7	16
56	Integrated redox-active reagents for photoinduced regio- and stereoselective fluorocarboborylation. Nature Communications, 2020, 11, 2572.	5.8	36
57	Helical Sulfono-Î ³ -AApeptides with Aggregation-Induced Emission and Circularly Polarized Luminescence. Journal of the American Chemical Society, 2019, 141, 12697-12706.	6.6	106
58	Organic Roomâ€Temperature Phosphorescence with Strong Circularly Polarized Luminescence Based on Paracyclophanes. Angewandte Chemie - International Edition, 2019, 58, 17220-17225.	7.2	97
59	Organic Roomâ€Temperature Phosphorescence with Strong Circularly Polarized Luminescence Based on Paracyclophanes. Angewandte Chemie, 2019, 131, 17380-17385.	1.6	27
60	Green-emitting iridium(iii) complexes containing pyridine sulfonic acid as ancillary ligands for efficient OLEDs with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2019, 7, 11606-11611.	2.7	12
61	Syntheses, Crystal Structures, and Photoluminescence of a Series of Iridium(III) Complexes Containing the Pentafluorosulfanyl Group. Organometallics, 2019, 38, 3553-3559.	1.1	17
62	Two platinum(<scp>ii</scp>) complexes with a 4-phenyl-4 <i>H</i> -1,2,4-triazole derivative as an ancillary ligand for efficient green OLEDs. Dalton Transactions, 2019, 48, 1892-1899.	1.6	8
63	Two green iridium(iii) complexes containing the electron-transporting group of 4-phenyl-4H-1,2,4-triazole for highly efficient OLEDs. Journal of Materials Chemistry C, 2019, 7, 2022-2028.	2.7	11
64	Highly efficient green and red electroluminescence with an extremely low efficiency roll-off based on iridium(<scp>iii</scp>) complexes containing a bis(diphenylphorothioyl)amide ancillary ligand. Journal of Materials Chemistry C, 2019, 7, 2570-2576.	2.7	24
65	Fast Synthesis of Iridium(III) Complexes Incorporating a Bis(diphenylphorothioyl)amide Ligand for Efficient Pure Green OLEDs. ACS Applied Materials & Interfaces, 2019, 11, 7184-7191.	4.0	45
66	Chiral iridium(<scp>iii</scp>) complexes with four-membered Ir–S–P–S chelating rings for high-performance circularly polarized OLEDs. Chemical Communications, 2019, 55, 8215-8218.	2.2	86
67	Room temperature fast synthesis four-membered red iridium(III) complexes containing Ir–S–P–S structures for OLEDs. Journal of Organometallic Chemistry, 2019, 896, 188-193.	0.8	6
68	Green phosphorescent organic electroluminescent devices with 27.9% external quantum efficiency by employing a terbium complex as a co-dopant. Journal of Materials Chemistry C, 2019, 7, 7953-7958.	2.7	22
69	Frontispiece: Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design. Chemistry - A European Journal, 2019, 25, .	1.7	0
70	Pure Red Iridium(III) Complexes Possessing Good Electron Mobility with 1,5-Naphthyridin-4-ol Derivatives for High-Performance OLEDs with an EQE over 31%. ACS Applied Materials & Interfaces, 2019, 11, 20192-20199.	4.0	37
71	Rapid room temperature synthesis of red iridium(<scp>iii</scp>) complexes with Ir–S–P–S structures for efficient OLEDs. Journal of Materials Chemistry C, 2019, 7, 6972-6977.	2.7	12
72	Non-doped and doped circularly polarized organic light-emitting diodes with high performances based on chiral octahydro-binaphthyl delayed fluorescent luminophores. Journal of Materials Chemistry C, 2019, 7, 7045-7052.	2.7	56

#	Article	IF	CITATIONS
73	Chiral Octahydroâ€Binaphthol Compoundâ€Based Thermally Activated Delayed Fluorescence Materials for Circularly Polarized Electroluminescence with Superior EQE of 32.6% and Extremely Low Efficiency Rollâ€Off. Advanced Materials, 2019, 31, e1900524.	11.1	198
74	Fast synthesis of iridium(<scp>iii</scp>) complexes with sulfur-containing ancillary ligand for high-performance green OLEDs with EQE exceeding 31%. Journal of Materials Chemistry C, 2019, 7, 7273-7278.	2.7	20
75	Sulfur atom containing ligands induced rapid room temperature synthesis of red iridium(<scp>iii</scp>) complexes with Ir–S–P–S structures for OLEDs. New Journal of Chemistry, 2019, 43, 8722-8727.	1.4	9
76	Four-membered red iridium(<scp>iii</scp>) complexes with Ir–S–P–S structures: rapid room-temperature synthesis and application in OLEDs. Dalton Transactions, 2019, 48, 7583-7588.	1.6	11
77	A series of red iridium(<scp>iii</scp>) complexes using flexible dithiocarbamate derivatives as ancillary ligands for highly efficient phosphorescent OLEDs. Materials Chemistry Frontiers, 2019, 3, 860-866.	3.2	16
78	Efficient phosphorescent red iridium(<scp>iii</scp>) complexes containing a four-membered Ir–S–C–S ring backbone and large hindered spacers for high-performance OLEDs. Journal of Materials Chemistry C, 2019, 7, 3862-3868.	2.7	19
79	Configurationally Stable Platinahelicene Enantiomers for Efficient Circularly Polarized Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 5672-5676.	1.7	98
80	Efficient sky-blue OLEDs with extremely low efficiency roll-off based on stable iridium complexes with a bis(diphenylphorothioyl)amide ligand. Dalton Transactions, 2019, 48, 9744-9750.	1.6	10
81	Rapid room temperature synthesis of red iridium(<scp>iii</scp>) complexes containing a four-membered Ir–S–C–S chelating ring for highly efficient OLEDs with EQE over 30%. Chemical Science, 2019, 10, 3535-3542.	3.7	55
82	Light-controlled efficient photoluminescence based on an europium β-diketonate complex with single-crystal-to-single-crystal [2+2] cycloaddition. Chemical Communications, 2019, 55, 12873-12876.	2.2	13
83	Green iridium complexes based on pyrimidine derivatives for efficient electroluminescence with EQE near 30%. Dyes and Pigments, 2019, 160, 863-871.	2.0	12
84	Leaving Group Assisted Strategy for Photoinduced Fluoroalkylations Using <i>N</i> â€Hydroxybenzimidoyl Chloride Esters. Angewandte Chemie, 2019, 131, 634-637.	1.6	16
85	Leaving Group Assisted Strategy for Photoinduced Fluoroalkylations Using <i>N</i> â€Hydroxybenzimidoyl Chloride Esters. Angewandte Chemie - International Edition, 2019, 58, 624-627.	7.2	60
86	Iridium(III) complexes adopting thienylpyridine derivatives for yellow-to-deep red OLEDs with low efficiency roll-off. Dyes and Pigments, 2019, 162, 863-871.	2.0	12
87	Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design. Chemistry - A European Journal, 2019, 25, 5623-5642.	1.7	168
88	High sensitization efficiency and energy transfer routes for population inversion at low pump intensity in Er organic complexes for IR amplification. Scientific Reports, 2018, 8, 3226.	1.6	8
89	Efficient electroluminescence of bluish green iridium complexes with 2-(3,5-bis(trifluoromethyl)phenyl)pyrimidine and 2-(3,5-bis(trifluoromethyl)phenyl)-5-fluoropyrimidine as the main ligands. Inorganic Chemistry Frontiers, 2018, 5, 1545-1552.	3.0	7
90	The Taiji and Eight Trigrams chemistry philosophy of chiral iridium(<scp>iii</scp>) complexes with triplex stereogenic centers. Dalton Transactions, 2018, 47, 4045-4048.	1.6	11

You-Xuan Zheng

#	Article	IF	CITATIONS
91	Versatile functionalization of trifluoromethyl based deep blue thermally activated delayed fluorescence materials for organic light emitting diodes. New Journal of Chemistry, 2018, 42, 4317-4323.	1.4	32
92	Highly efficient bluish green organic light-emitting diodes of iridium(<scp>iii</scp>) complexes with low efficiency roll-off. Dalton Transactions, 2018, 47, 7587-7593.	1.6	15
93	Highly efficient yellow electroluminescence of iridium complexes with good electron mobility. Materials Chemistry Frontiers, 2018, 2, 1284-1290.	3.2	19
94	Efficient green photoluminescence and electroluminescence of iridium complexes with high electron mobility. Dalton Transactions, 2018, 47, 16543-16550.	1.6	10
95	Synthesis and non-volatile electrical memory characteristics of triphenylamine-based polyimides with flexibility segments. New Journal of Chemistry, 2018, 42, 19008-19019.	1.4	9
96	Photoluminescence and electroluminescence of four orange-red and red organic iridium(III) complexes. Journal of Organometallic Chemistry, 2018, 876, 35-42.	0.8	5
97	Orange red iridium complexes with good electron mobility and mild OLED efficiency roll-off. Journal of Organometallic Chemistry, 2018, 876, 26-34.	0.8	8
98	Tunable Emission Color of Iridium(III) Complexes with Phenylpyrazole Derivatives as the Main Ligands for Organic Light-Emitting Diodes. Organometallics, 2018, 37, 3154-3164.	1.1	23
99	Synthesis and resistive switching characteristics of polyimides derived from 2,7-aryl substituents tetraphenyl fluorene diamines. European Polymer Journal, 2018, 108, 85-97.	2.6	28
100	Efficient yellow electroluminescence of four iridium(<scp>iii</scp>) complexes with benzo[<i>d</i>]thiazole derivatives as main ligands. Dalton Transactions, 2018, 47, 8032-8040.	1.6	10
101	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie - International Edition, 2018, 57, 11316-11320.	7.2	314
102	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie, 2018, 130, 11486-11490.	1.6	77
103	Enhancing the sensitization efficiency of erbium doped organic complexes by heavy halogen substitution. Journal of Materials Chemistry C, 2018, 6, 7012-7017.	2.7	3
104	Iridium(<scp>iii</scp>) phosphors with bis(diphenylphorothioyl)amide ligand for efficient green and sky-blue OLEDs with EQE of nearly 28%. Journal of Materials Chemistry C, 2018, 6, 9010-9016.	2.7	23
105	Nonvolatile writeâ€once readâ€manyâ€times memory behaviors of polyimides containing tetraphenyl fluorene core and the pendant triphenylamine or carbazole moieties. Journal of Polymer Science Part A, 2018, 56, 1630-1644.	2.5	9
106	Efficient bluish green electroluminescence of iridium complexes with good electron mobility. New Journal of Chemistry, 2018, 42, 13351-13357.	1.4	3
107	Rational design of phosphorescent iridium(III) complexes for emission color tunability and their applications in OLEDs. Coordination Chemistry Reviews, 2018, 374, 55-92.	9.5	240
108	Highly efficient green electroluminescence of iridium(<scp>iii</scp>) complexes based on (1 <i>H</i> -pyrazol-5-yl)pyridine derivatives ancillary ligands with low efficiency roll-off. Journal of Materials Chemistry C, 2018, 6, 5778-5784.	2.7	17

You-Xuan Zheng

#	Article	IF	CITATIONS
109	Efficient electroluminescence of sky-blue iridium(III) complexes for organic light-emitting diodes. Dyes and Pigments, 2018, 159, 100-106.	2.0	4
110	High performance red phosphorescent organic electroluminescent devices with characteristic mechanisms by utilizing terbium or gadolinium complexes as sensitizers. Journal of Materials Chemistry C, 2017, 5, 2066-2073.	2.7	31
111	Photoluminescence and electroluminescence of an iridium(<scp>iii</scp>) complex with 2′,6′-bis(trifluoromethyl)-2,4′-bipyridine and 2-(5-phenyl-1,3,4-thiadiazol-2-yl)phenol ligands. New Journal of Chemistry, 2017, 41, 3029-3035.	1.4	7
112	Efficient green electroluminescence based on an iridium(iii) complex with different device structures. RSC Advances, 2017, 7, 2615-2620.	1.7	10
113	Photoluminescence and electroluminescence of four platinum complexes with trifluoromethyl-substituted 2-phenylpyridine and tetraphenylimidodiphosphinate ligands. Dyes and Pigments, 2017, 143, 33-41.	2.0	14
114	Photocatalyzed cascade oxidative annulation of propargylamines and phosphine oxides. Chemical Communications, 2017, 53, 6637-6640.	2.2	33
115	Efficient deep red electroluminescence of iridium(<scp>iii</scp>) complexes with 2,3-diphenylquinoxaline derivatives and tetraphenylimidodiphosphinate. Journal of Materials Chemistry C, 2017, 5, 3714-3724.	2.7	37
116	Efficient Electroluminescence of Two Heteroleptic Platinum Complexes with a 2-(5-Phenyl-1,3,4-oxadiazol-2-yl)phenol Ancillary Ligand. Organometallics, 2017, 36, 448-454.	1.1	11
117	Suppression of efficiency roll-off in highly efficient blue phosphorescent organic light-emitting devices using novel iridium phosphors with good electron mobility. Organic Electronics, 2017, 42, 141-145.	1.4	16
118	Photoluminescence and electroluminescence of iridium(iii) complexes with 2′,6′-bis(trifluoromethyl)-2,4′-bipyridine and 1,3,4-oxadiazole/1,3,4-thiadiazole derivative ligands. Dalton Transactions, 2017, 46, 845-853.	1.6	24
119	Efficient orange-red electroluminescence of iridium complexes with 1-(2,6-bis(trifluoromethyl)pyridin-4-yl)isoquinoline and 4-(2,6-bis(trifluoromethyl)pyridin-4-yl)quinazoline ligands. Dalton Transactions, 2017, 46, 14916-14925.	1.6	19
120	Highly efficient orange-red electroluminescence of iridium complexes with good electron mobility. Journal of Materials Chemistry C, 2017, 5, 8150-8159.	2.7	25
121	Novel phosphine oxide-based electron-transporting materials for efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 8579-8585.	2.7	7
122	Photoluminescence and electroluminescence of deep red iridium(iii) complexes with 2,3-diphenylquinoxaline derivatives and 1,3,4-oxadiazole derivatives ligands. RSC Advances, 2017, 7, 37021-37031.	1.7	12
123	Synthesis, photoluminescence and electroluminescence of one iridium complex with 2-(2,4-difluorophenyl)-4-(trifluoromethyl)pyrimidine and tetraphenylimidodiphosphinate ligands. Journal of Organometallic Chemistry, 2017, 848, 226-231.	0.8	13
124	Syntheses, photoluminescence and electroluminescence of two novel platinum(<scp>ii</scp>) complexes. Dalton Transactions, 2017, 46, 150-157.	1.6	11
125	Highly efficient green phosphorescent organic electroluminescent devices with a terbium complex as the sensitizer. Dyes and Pigments, 2017, 136, 361-367.	2.0	23
126	Efficient green electroluminescent devices based on iridium complex with wide energy gap complexes as sensitizers. Organic Electronics, 2016, 37, 85-92.	1.4	10

#	Article	IF	CITATIONS
127	Green organic light-emitting devices with external quantum efficiency up to nearly 30% based on an iridium complex with a tetraphenylimidodiphosphinate ligand. RSC Advances, 2016, 6, 63200-63205.	1.7	20
128	Novel Design of Iridium Phosphors with Pyridinylphosphinate Ligands for High-Efficiency Blue Organic Light-emitting Diodes. Scientific Reports, 2016, 6, 38478.	1.6	35
129	Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosensors and Bioelectronics, 2016, 85, 287-293.	5.3	163
130	Cyclometallated iridium phosphors with amino acid ancillary ligand for intracellular imaging. Chinese Chemical Letters, 2016, 27, 1582-1585.	4.8	4
131	Highly Efficient Organic Lightâ€Emitting Diodes with Low Efficiency Rollâ€Off Based on Iridium Complexes Containing Pinene Sterically Hindered Spacer. Advanced Optical Materials, 2016, 4, 1726-1731.	3.6	34
132	Hole-transporting small molecules as a mixed host for efficient solution processed green phosphorescent organic light emitting diodes. Organic Electronics, 2016, 38, 29-34.	1.4	10
133	Two Greenâ€Phosphorescent Iridium Complexes with 2â€Phenylpyrimidine Derivatives and Tetraphenylimidodiphosphinate for Efficient Organic Lightâ€Emitting Diodes. European Journal of Inorganic Chemistry, 2016, 2016, 2556-2561.	1.0	12
134	Iridium(<scp>iii</scp>) phosphorescent complexes with dual stereogenic centers: single crystal, electronic circular dichroism evidence and circularly polarized luminescence properties. Dalton Transactions, 2016, 45, 19234-19237.	1.6	44
135	Crystal structure, photoluminescence and electroluminescence of three bluish green light-emitting iridium complexes. Dalton Transactions, 2016, 45, 7366-7372.	1.6	25
136	Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes. Scientific Reports, 2015, 5, 14912.	1.6	157
137	<i>N</i> -Heterocyclic Carbenes: Versatile Second Cyclometalated Ligands for Neutral Iridium(III) Heteroleptic Complexes. Inorganic Chemistry, 2015, 54, 161-173.	1.9	87
138	1-(N-phenylamino)naphthalene oligomers as novel hole transport materials for highly efficient green electrophosphorescence. Dyes and Pigments, 2015, 118, 1-8.	2.0	11
139	Syntheses, crystal structure and photophysical property of iridium complexes with 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as ancillary ligands. Journal of Organometallic Chemistry, 2015, 785, 11-18.	0.8	18
140	Yellow electrophosphorescent devices with hosts containing N1-(naphthalen-1-yl)-N1,N4-diphenylnaphthalene-1,4-diamine and tetraphenylsilane units. RSC Advances, 2015, 5, 27235-27241.	1.7	7
141	Construction of Identical [2 + 2] Schiff-Base Macrocyclic Ligands by Ln ^{III} and Zn ^{II} Template Ions Including Efficient Yb ^{III} Near-Infrared Sensitizers. Inorganic Chemistry, 2015, 54, 5295-5300.	1.9	14
142	Efficient OLEDs with low efficiency roll-off using iridium complexes possessing good electron mobility. Journal of Materials Chemistry C, 2015, 3, 3694-3701.	2.7	88
143	Two blue iridium complexes for efficient electroluminescence with low efficiency roll-off. RSC Advances, 2015, 5, 89218-89225.	1.7	16
144	Highly efficient yellow phosphorescent organic light-emitting diodes with novel phosphine oxide-based bipolar host materials. Journal of Materials Chemistry C, 2015, 3, 11540-11547.	2.7	14

#	Article	IF	CITATIONS
145	Highly efficient yellow phosphorescent OLEDs based on two novel bipolar host materials. New Journal of Chemistry, 2015, 39, 7954-7960.	1.4	7
146	Efficient organic light-emitting diodes with low efficiency roll-off using iridium emitter with 2-(5-phenyl-1,3,4-oxadiazol-2-yl)phenol as ancillary ligand. Journal of Organometallic Chemistry, 2014, 765, 39-45.	0.8	23
147	Organo-erbium systems for optical amplification at telecommunications wavelengths. Nature Materials, 2014, 13, 382-386.	13.3	120
148	High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation. Organic Electronics, 2014, 15, 864-870.	1.4	7
149	Efficient organic light-emitting diodes with low efficiency roll-off at high brightness using iridium emitters based on 2-(4-trifluoromethyl-6-fluoro phenyl)pyridine and tetraphenylimidodiphosphinate derivatives. Dyes and Pigments, 2014, 105, 105-113.	2.0	22
150	Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer. Journal of Luminescence, 2014, 148, 6-9.	1.5	8
151	Dramatic improvement in photostability of luminescent Eu(III) complexes with tetraphenylimidodiphosphinate ligand. Journal of Luminescence, 2014, 146, 544-549.	1.5	10
152	Syntheses, photoluminescence and electroluminescence of four heteroleptic iridium complexes with 2-(5-phenyl-1,3,4-oxadiazol-2-yl)-phenol derivatives as ancillary ligands. Journal of Materials Chemistry C, 2014, 2, 1116-1124.	2.7	35
153	High efficiency green phosphorescent top-emitting organic light-emitting diode with ultrathin non-doped emissive layer. Organic Electronics, 2014, 15, 2408-2413.	1.4	9
154	Syntheses, crystal structure, photophysical property and theoretical study of a new series of iridium complexes with N-(diphenylphosphoryl)benzamide derivatives as the ancillary ligands. Journal of Organometallic Chemistry, 2014, 755, 110-119.	0.8	7
155	High efficiency green phosphorescent organic light-emitting diodes with a low roll-off at high brightness. Organic Electronics, 2013, 14, 2854-2858.	1.4	41
156	Synthesis, photoluminescence and computational study of rhenium(I) diimine complexes with [1,3,4]oxadiazole substituted 2,2′-bipyridine ligands. Journal of Organometallic Chemistry, 2013, 743, 37-43.	0.8	5
157	Syntheses, Photoluminescence, and Electroluminescence of Iridium(III) Complexes with Fluorinated 2â€Phenylpyridine as Main Ligands and Tertraphenylimidodiphosphinate as Ancillary Ligand. European Journal of Inorganic Chemistry, 2013, 2013, 5683-5693.	1.0	26
158	Synthesis and photoluminescence properties of rhenium(<scp>i</scp>) complexes based on 2,2′:6′,2′′-terpyridine derivatives with hole-transporting units. Dalton Transactions, 2013, 42, 2716-27	2 ¹ .6	41
159	Syntheses and photoluminescence properties of rhenium(I) complexes based on dipyrido[3,2-a:2′,3′-c]phenazine derivatives with carbazole moiety. Journal of Coordination Chemistry, 2013, 66, 958-965.	0.8	4
160	Efficient sensitized emission in Yb(iii) pentachlorotropolonate complexes. Chemical Communications, 2013, 49, 1933.	2.2	27
161	Improved efficiency roll-off at high brightness in simplified phosphorescent organic light emitting diodes with a crossfading-host. Organic Electronics, 2013, 14, 2682-2686.	1.4	18
162	Highly efficient green phosphorescent OLEDs based on a novel iridium complex. Journal of Materials Chemistry C, 2013, 1, 560-565.	2.7	86

#	Article	IF	CITATIONS
163	Syntheses, Photoluminescence, and Electroluminescence of a Series of Iridium Complexes with Trifluoromethyl-Substituted 2-Phenylpyridine as the Main Ligands and Tetraphenylimidodiphosphinate as the Ancillary Ligand. Inorganic Chemistry, 2013, 52, 4916-4925.	1.9	98
164	Electron mobility determination of efficient phosphorescent iridium complexes with tetraphenylimidodiphosphinate ligand via transient electroluminescence method. Applied Physics Letters, 2012, 100, 073303.	1.5	40
165	Preparation and luminescence of transparent zeolite L-polymer hybrid materials. Journal of Materials Chemistry, 2012, 22, 4056.	6.7	28
166	Synthesis, structure, photophysical and electrochemical properties of series of new fac-triscyclometallated iridium complexes with carbazole or oxadiazole moieties. Inorganica Chimica Acta, 2012, 391, 50-57.	1.2	21
167	Efficient blue emitters based on 1,3,5-triazine for nondoped organic light emitting diode applications. Organic Electronics, 2012, 13, 2177-2184.	1.4	10
168	Photostable and efficient red-emitters based on zeolite L crystals. Journal of Materials Chemistry, 2011, 21, 14755.	6.7	66
169	Highly Efficient Green and Blueâ€Green Phosphorescent OLEDs Based on Iridium Complexes with the Tetraphenylimidodiphosphinate Ligand. Advanced Materials, 2011, 23, 4041-4046.	11.1	291
170	All-solid-state continuous-wave frequency doubling Nd:YLF/LBO laser with 2.15 W output power at 526 nm. Laser Physics, 2010, 20, 1580-1584.	0.6	14
171	Green synthesis of luminescent soft materials derived from task-specific ionic liquid for solubilizing lanthanide oxides and organic ligand. Journal of Materials Chemistry, 2009, 19, 5533.	6.7	49
172	Synthesis, structural characterization and photoluminescence properties of rhenium(I) complexes based on bipyridine derivatives with carbazole moieties. Dalton Transactions, 2009, , 10563.	1.6	34
173	An infinite photoluminescent coordination nanotube [CuSCN(L)]·(DMF)0.5. CrystEngComm, 2009, 11, 246-248.	1.3	55
174	Synthesis and Photoluminescence Properties of Heteroleptic Europium(III) Complexes with Appended Carbazole Units. European Journal of Inorganic Chemistry, 2008, 2008, 2075-2080.	1.0	28
175	Syntheses, structures, photoluminescence, and magnetic properties of nanoporous 3D lanthanide coordination polymers with 4,4′-biphenyldicarboxylate ligand. CrystEngComm, 2008, 10, 1237.	1.3	68
176	Circularly Polarized White Organic Lightâ€Emitting Diodes Based on Spiroâ€Type Thermally Activated Delayed Fluorescence Materials. Angewandte Chemie, 0, , .	1.6	10