David C Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3253781/publications.pdf Version: 2024-02-01

		22132	24232
224	14,331	59	110
papers	citations	h-index	g-index
225	225	225	6542
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Prostaglandins: Stimulation of Bone Resorption in Tissue Culture. Endocrinology, 1970, 86, 1436-1440.	1.4	938
2	Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Research, 1974, 71, 17-33.	1.1	672
3	Pineal N-acetyltransferase and hydroxyindole-O-methyl-transferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Research, 1979, 174, 245-262.	1.1	565
4	Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature, 1985, 314, 359-361.	13.7	416
5	GCN5-Related N-Acetyltransferases: A Structural Overview. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 81-103.	18.3	407
6	Crystal Structure of the 14-3-3ζ:Serotonin N-Acetyltransferase Complex. Cell, 2001, 105, 257-267.	13.5	372
7	Arylalkylamine N-Acetyltransferase: "the Timezymeâ€*. Journal of Biological Chemistry, 2007, 282, 4233-4237.	1.6	362
8	Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Progress in Retinal and Eye Research, 2005, 24, 433-456.	7.3	307
9	Melatonin Production: Proteasomal Proteolysis in Serotonin N-Acetyltransferase Regulation. Science, 1998, 279, 1358-1360.	6.0	262
10	Natural melatonin `knockdown' in C57BL/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Molecular Brain Research, 1998, 63, 189-197.	2.5	258
11	Atypical Synergisticα1- andβ-Adrenergic Regulation of Adenosine 3′,5′-Monophosphate and Guanosine 3â€ Monophosphate in Rat Pinealocytes. Endocrinology, 1985, 116, 2167-2173.	€²,5′- 1.4	252
12	Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell and Tissue Research, 2002, 309, 127-137.	1.5	220
13	Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1222-1227.	3.3	195
14	Evolution of cell–cell signaling in animals: did late horizontal gene transfer from bacteria have a role?. Trends in Genetics, 2004, 20, 292-299.	2.9	189
15	Photoneural Regulation of the Mammalian Pineal Gland. Novartis Foundation Symposium, 1985, 117, 38-56.	1.2	180
16	Regulation of Pineal Melatonin in the Syrian Hamster. Endocrinology, 1979, 104, 385-389.	1.4	168
17	Avian Melatonin Synthesis: Photic and Circadian Regulation of Serotonin <i>N</i> â€Acetyltransferase mRNA in the Chicken Pineal Gland and Retina. Journal of Neurochemistry, 1997, 68, 213-224.	2.1	163
18	The Rat Arylalkylamine N-Acetyltransferase Gene Promoter. Journal of Biological Chemistry, 1997, 272, 6979-6985.	1.6	158

#	Article	IF	CITATIONS
19	The Structural Basis of Ordered Substrate Binding by Serotonin N-Acetyltransferase. Cell, 1999, 97, 361-369.	13.5	154
20	A Diurnal Melatonin Rhythm in Primate Cerebrospinal Fluid*. Endocrinology, 1979, 104, 295-301.	1.4	144
21	Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species. Cell and Tissue Research, 1985, 239, 81-85.	1.5	132
22	Characterization of the Chicken SerotoninN-Acetyltransferase Gene. Journal of Biological Chemistry, 2000, 275, 32991-32998.	1.6	132
23	Sympathetic Nerve Endings in the Pineal Gland Protect Against Acute Stress-Induced Increase in N-Acetyltransferase (EC 2.3.1.5.) Activity. Endocrinology, 1976, 99, 840-851.	1.4	130
24	Night/Day Changes in Pineal Expression of >600 Genes. Journal of Biological Chemistry, 2009, 284, 7606-7622.	1.6	130
25	Ontogeny of the Pineal Melatonin Rhythm in the Syrian (Mesocricetus auratus) and Siberian (Phodopus sungorus) Hamsters and in the Rat. Endocrinology, 1980, 107, 1061-1064.	1.4	128
26	Zebrafish Serotonin N-Acetyltransferase-2: Marker for Development of Pineal Photoreceptors and Circadian Clock Function1. Endocrinology, 1999, 140, 4895-4903.	1.4	126
27	Melatonin Biosynthesis. Molecular Cell, 1999, 3, 23-32.	4.5	121
28	Kinetic Analysis of the Catalytic Mechanism of Serotonin N-Acetyltransferase (EC 2.3.1.87). Journal of Biological Chemistry, 1998, 273, 3045-3050.	1.6	114
29	The 2004 Aschoff/Pittendrigh Lecture: Theory of the Origin of the Pineal Gland— A Tale of Conflict and Resolution. Journal of Biological Rhythms, 2004, 19, 264-279.	1.4	114
30	Inhibition of the <i>in Vitro</i> Pituitary Response to Luteinizing Hormone-Releasing Hormone by Melatonin, Serotonin, and 5-Methoxytryptamine ¹ . Endocrinology, 1977, 100, 675-680.	1.4	111
31	MATERNAL-FETAL TRANSFER OF MELATONIN IN THE NON-HUMAN PRIMATE. Pediatric Research, 1979, 13, 788-791.	1.1	110
32	Regulation of Pineal Rhythms in Chickens: Effects of Blinding, Constant Light, Constant Dark, and Superior Cervical Ganglionectomy. Endocrinology, 1975, 97, 1373-1378.	1.4	109
33	The Human SerotoninN-Acetyltransferase (EC 2.3.1.87) Gene (AANAT): Structure, Chromosomal Localization, and Tissue Expression. Genomics, 1996, 34, 76-84.	1.3	106
34	Effect of Norepinephrine on the Concentration of Adenosine 3′,5′-Monophosphate of Rat Pineal Gland in Organ Culture. Endocrinology, 1972, 90, 1470-1475.	1.4	105
35	Role of Adenosine-3′,5′-Monophosphate in the Hormonal Regulation of Bone Resorption: Studies with Cultured Fetal Bone1. Endocrinology, 1971, 89, 818-826.	1.4	103
36	Transport of Maternal [3H]Melatonin to Suckling Rats and the Fate of [³ H]Melatonin in the Neonatal Rat. Endocrinology, 1978, 102, 582-588.	1.4	99

#	Article	IF	CITATIONS
37	Transcripts Encoding Two Melatonin Synthesis Enzymes in the Teleost Pineal Organ: Circadian Regulation in Pike and Zebrafish, But Not in Trout*. Endocrinology, 1998, 139, 905-912.	1.4	98
38	Reciprocal Day/Night Relationship between Serotonin Oxidation and N-Acetylation Products in the Rat Pineal Gland [*] . Endocrinology, 1983, 113, 1582-1586.	1.4	95
39	Two Arylalkylamine N-Acetyltransferase Genes Mediate Melatonin Synthesis in Fish. Journal of Biological Chemistry, 1999, 274, 9076-9082.	1.6	94
40	Circadian Expression of Transcription Factor Fra-2 in the Rat Pineal Gland. Journal of Biological Chemistry, 1995, 270, 27319-27325.	1.6	90
41	Melatonin Synthesis Enzymes in Macaca mulatta: Focus on Arylalkylamine N-Acetyltransferase (EC) Tj ETQq1	1 0.784314 1.8	∙rgBŢ ₅ /Overloo
42	Circadian changes in long noncoding RNAs in the pineal gland. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13319-13324.	3.3	83
43	Regulation of Pineal Rhythms in Chickens: Refractory Period and Nonvisual Light Perception ¹ . Endocrinology, 1975, 96, 848-853.	1.4	78
44	Studies on the Daily Pattern of Pineal Melatonin in the Syrian Hamster. Endocrinology, 1980, 107, 1525-1529.	1.4	78
45	Selective Adrenergic/Cyclic AMP-Dependent Switch-Off of Proteasomal Proteolysis Alone Switches on Neural Signal Transduction. Journal of Neurochemistry, 2002, 75, 2123-2132.	2.1	75
46	Evolution of arylalkylamine N-acetyltransferase: Emergence and divergence. Molecular and Cellular Endocrinology, 2006, 252, 2-10.	1.6	72
47	MicroRNAs in the Pineal Gland. Journal of Biological Chemistry, 2012, 287, 25312-25324.	1.6	71
48	Melatonin pathway: breaking the â€~high-at-night' rule in trout retina. Experimental Eye Research, 2006, 82, 620-627.	1.2	69
49	Regulation of pineal serotonin <i>N</i> -acetyltransferase activity. Biochemical Society Transactions, 1992, 20, 299-304.	1.6	68
50	Melatonin synthesis pathway: circadian regulation of the genes encoding the key enzymes in the chicken pineal gland and retina. Reproduction, Nutrition, Development, 1999, 39, 325-334.	1.9	68
51	Evolution of The Vertebrate Pineal Gland: The Aanat Hypothesis. Chronobiology International, 2006, 23, 5-20.	0.9	67
52	Thin-layer chromatographic separation of pineal gland derivatives of serotonin-14C. Analytical Biochemistry, 1969, 31, 480-483.	1.1	66
53	Human hydroxyindole-O-methyltransferase in pineal gland, retina and Y79 retinoblastoma cells. Brain Research, 1995, 696, 37-48.	1.1	64
54	Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 314-319.	3.3	64

#	Article	IF	CITATIONS
55	Rat Pineal <i>α</i> ₁ -Adrenoceptors: Identification and Characterization Using [¹²⁵ I]Iodo-2-[<i>β</i> -(4-Hydroxyphenyl)-Ethylaminomethyl]Tetralone. Endocrinology, 1984, 114, 435-440.	1.4	63
56	Activators of Protein Kinase C Act at a Postreceptor Site to Amplify Cyclic AMP Production in Rat Pinealocytes. Journal of Neurochemistry, 1988, 50, 149-155.	2.1	63
57	α1-Adrenergic Potentiation of Vasoactive Intestinal Peptide Stimulation of Rat Pinealocyte Adenosine 3′,5′-Monophosphate and Guanosine 3′,5′- Monophosphate: Evidence for a Role of Calcium and Prote Kinase-C. Endocrinology, 1988, 122, 702-708.	in1.4	63
58	Expression of theOtx2homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland. Journal of Neurochemistry, 2006, 97, 556-566.	2.1	63
59	Cellular stabilization of the melatonin rhythm enzyme induced by nonhydrolyzable phosphonate incorporation. Nature Structural and Molecular Biology, 2003, 10, 1054-1057.	3.6	61
60	Pineal Hydroxyindole-O-methyl Transferase Activity in the Growing Rat. Endocrinology, 1969, 84, 1523-1525.	1.4	60
61	Regulation of Arylalkylamine <i>N</i> -Acetyltransferase-2 (AANAT2, EC 2.3.1.87) in the Fish Pineal Organ: Evidence for a Role of Proteasomal Proteolysis. Endocrinology, 2001, 142, 1804-1813.	1.4	60
62	Input and output signals in a model neural system: The regulation of melatonin production in the pineal gland. In Vitro, 1970, 6, 197-204.	1.2	59
63	Evidence for the Placental Transfer of 3H-Acetyl-Melatonin. Nature: New Biology, 1972, 237, 117-118.	4.5	59
64	Temporal–spatial characterization of chicken clock genes: circadian expression in retina, pineal gland, and peripheral tissues. Journal of Neurochemistry, 2003, 85, 851-860.	2.1	59
65	Regulation of Rat Pineal Hydroxyindole-O-Methyltransferase in Neonatal and Adult Rats. Journal of Neurochemistry, 1983, 40, 1647-1653.	2.1	56
66	Starting the Zebrafish Pineal Circadian Clock with a Single Photic Transition. Endocrinology, 2006, 147, 2273-2279.	1.4	55
67	Characterization of the Saccharomyces cerevisiae Homolog of the Melatonin Rhythm Enzyme Arylalkylamine N-Acetyltransferase (EC 2.3.1.87). Journal of Biological Chemistry, 2001, 276, 47239-47247.	1.6	54
68	Photic regulation of the melatonin rhythm: monkey and man are not the same. Brain Research, 1980, 182, 211-216.	1.1	53
69	Cloning and Characterization of the \hat{a}^{\sim} and \hat{I}_{I} Isoforms of the 14-3-3 Proteins. DNA and Cell Biology, 1994, 13, 629-640.	0.9	53
70	Circadian expression of tryptophan hydroxylase mRNA in the chicken retina. Molecular Brain Research, 1998, 61, 243-250.	2.5	53
71	Ontogenetic expression of the Otx2 and Crx homeobox genes in the retina of the rat. Experimental Eye Research, 2007, 85, 65-73.	1.2	53
72	Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland. Endocrinology, 2016, 157, 2028-2040.	1.4	53

#	Article	IF	CITATIONS
73	Melatonin Inhibition of the <i>in vivo</i> Pituitary Response to Luteinizing Hormone-Releasing Hormone in the Neonatal Rat. Neuroendocrinology, 1980, 31, 13-17.	1.2	51
74	Tissue-Specific Transgenic Knockdown of Fos-Related Antigen 2 (Fra-2) Expression Mediated by Dominant Negative Fra-2. Molecular and Cellular Biology, 2001, 21, 3704-3713.	1.1	51
75	Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior. PLoS Genetics, 2016, 12, e1006445.	1.5	51
76	[68] Hydroxyindole O-methyltransferase. Methods in Enzymology, 1987, 142, 590-596.	0.4	50
77	Human Hydroxyindole- <i>O</i> -Methyltransferase: Presence of LINE-1 Fragment in a cDNA Clone and Pineal mRNA. DNA and Cell Biology, 1993, 12, 715-727.	0.9	49
78	Melatonin synthesis. NeuroReport, 2000, 11, 255-258.	0.6	49
79	Developmental and Diurnal Dynamics of Pax4 Expression in the Mammalian Pineal Gland: Nocturnal Down-Regulation Is Mediated by Adrenergic-Cyclic Adenosine 3′,5′-Monophosphate Signaling. Endocrinology, 2009, 150, 803-811.	1.4	49
80	Absence of choline acetyltransferase in rat and rabbit pineal gland. Brain Research, 1974, 79, 347-351.	1.1	48
81	Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Experimental Eye Research, 2008, 87, 471-477.	1.2	48
82	Immunocytochemical demonstration of rod-opsin, S-antigen, and neuron-specific proteins in the human pineal gland. Cell and Tissue Research, 1992, 267, 493-498.	1.5	47
83	Daily Rhythms in Cortisol and Melatonin in Primate Cerebrospinal Fluid. Neuroendocrinology, 1981, 32, 193-196.	1.2	46
84	Zebrafish Serotonin-N-Acetyltransferase-2 Gene Regulation: Pineal-Restrictive Downstream Module Contains a Functional E-Box and Three Photoreceptor Conserved Elements. Molecular Endocrinology, 2004, 18, 1210-1221.	3.7	46
85	Cellular Stability of Serotonin N-Acetyltransferase Conferred by Phosphonodifluoromethylene Alanine (Pfa) Substitution for Ser-205. Journal of Biological Chemistry, 2005, 280, 10462-10467.	1.6	46
86	Pineal Gland in Organ Culture. II. Role of Adenosine 3′,5′-Monophosphate in the Regulation of Radiolabeled Melatonin Production. Endocrinology, 1971, 89, 453-464.	1.4	45
87	Alpha-adrenergic potentiation of beta-adrenergic stimulation of rat pineal N-acetyltransferase. Biochemical Pharmacology, 1984, 33, 3947-3950.	2.0	45
88	Genetic linkage mapping for a susceptibility locus to bipolar illness: Chromosomes 2,3,4,7,9,10p,11p,22, and Xpter. American Journal of Medical Genetics Part A, 1994, 54, 206-218.	2.4	44
89	The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus. Brain Structure and Function, 2015, 220, 1497-1509.	1.2	44
90	NeuroD1: developmental expression and regulated genes in the rodent pineal gland. Journal of Neurochemistry, 2007, 102, 887-899.	2.1	43

#	Article	IF	CITATIONS
91	Pineal function: Impact of microarray analysis. Molecular and Cellular Endocrinology, 2010, 314, 170-183.	1.6	43
92	Chick Pineal Melatonin Synthesis. Journal of Neurochemistry, 2002, 74, 2315-2321.	2.1	42
93	α _{1D} Lâ€Type Ca ²⁺ â€Channel Currents: Inhibition by a βâ€Adrenergic Agonist and Pituitary Adenylate Cyclaseâ€Activating Polypeptide (PACAP) in Rat Pinealocytes. Journal of Neurochemistry, 1997, 68, 1078-1087.	2.1	42
94	Zebrafish Serotonin N-Acetyltransferase-2: Marker for Development of Pineal Photoreceptors and Circadian Clock Function. Endocrinology, 1999, 140, 4895-4903.	1.4	42
95	Single-cell [Ca2+]i analysis and biochemical characterization of pinealocytes immobilized with novel attachment peptide preparation. Brain Research, 1993, 614, 251-256.	1.1	41
96	Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish. Developmental Dynamics, 2002, 225, 241-249.	0.8	41
97	On GABA function and physiology in the pineal gland. Brain Research, 1976, 118, 383-394.	1.1	40
98	β-Adrenergic Receptor Control of Rat Pineal Hydroxyindole-O-Methyltransferase*. Endocrinology, 1983, 113, 348-353.	1.4	40
99	Retinal melatonin production: role of proteasomal proteolysis in circadian and photic control of arylalkylamine N-acetyltransferase. Investigative Ophthalmology and Visual Science, 2002, 43, 564-72.	3.3	40
100	cAMP Regulation of ArylalkylamineN-Acetyltransferase (AANAT, EC 2.3.1.87). Journal of Biological Chemistry, 2001, 276, 24097-24107.	1.6	39
101	Photic Regulation of Arylalkylamine N-Acetyltransferase Binding to 14-3-3 Proteins in Retinal Photoreceptor Cells. Journal of Neuroscience, 2006, 26, 9153-9161.	1.7	39
102	Homeobox Genes in the Rodent Pineal Gland: Roles in Development and Phenotype Maintenance. Neurochemical Research, 2013, 38, 1100-1112.	1.6	39
103	NGFI-B (Nurr77/Nr4a1) orphan nuclear receptor in rat pinealocytes: circadian expression involves an adrenergic-cyclic AMP mechanism. Journal of Neurochemistry, 2004, 91, 946-955.	2.1	38
104	Methionine Adenosyltransferase:Adrenergic-cAMP Mechanism Regulates a Daily Rhythm in Pineal Expression. Journal of Biological Chemistry, 2005, 280, 677-684.	1.6	38
105	Single-cell RNA sequencing of the mammalian pineal gland identifies two pinealocyte subtypes and cell type-specific daily patterns of gene expression. PLoS ONE, 2018, 13, e0205883.	1.1	38

106

#	Article	IF	CITATIONS
109	Developmental and daily expression of the <i>Pax4</i> and <i>Pax6</i> homeobox genes in the rat retina: localization of Pax4 in photoreceptor cells. Journal of Neurochemistry, 2009, 108, 285-294.	2.1	37
110	Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4). Molecular and Cellular Endocrinology, 2010, 314, 128-135.	1.6	37
111	Systematic Identification of Rhythmic Genes Reveals camk1gb as a New Element in the Circadian Clockwork. PLoS Genetics, 2012, 8, e1003116.	1.5	37
112	The effects of environmental lighting on the daily melatonin rhythm in primate cerebrospinal fluid. Brain Research, 1981, 223, 313-323.	1.1	36
113	Transmembrane receptor cross-talk: Concurrent VIP and α1-adrenergic activation rapidly elevates pinealocyte cGMP > 100-fold. Biochemical and Biophysical Research Communications, 1987, 146, 1478-1484.	1.0	36
114	Calcium Potentiates Cyclic AMP Stimulation of Pineal Arylalkylamine N-Acetyltransferase. Journal of Neurochemistry, 1993, 60, 1436-1443.	2.1	36
115	Genetic Targeting. Journal of Neurochemistry, 2002, 73, 1343-1349.	2.1	36
116	CLOCK and NPAS2 have overlapping roles in the circadian oscillation of arylalkylamine <i>N</i> â€acetyltransferase mRNA in chicken cone photoreceptors. Journal of Neurochemistry, 2010, 113, 1296-1306.	2.1	35
117	Dopaminergic neurons in explants of substantia nigra in culture. Journal of Neurobiology, 1973, 4, 461-470.	3.7	33
118	Regulation of Pineal α1B-Adrenergic Receptor mRNA: Day/Night Rhythm and β-Adrenergic Receptor/Cyclic AMP Control. Molecular Pharmacology, 1997, 51, 551-557.	1.0	33
119	Rat arylalkylamine <i>N</i> â€acetyltransferase gene: Upstream and intronic components of a bipartite promoter. Biology of the Cell, 1999, 91, 699-705.	0.7	33
120	Daily Rhythm in Pineal Phosphodiesterase (PDE) Activity Reflects Adrenergic/3′,5′-Cyclic Adenosine 5′-Monophosphate Induction of the PDE4B2 Variant. Endocrinology, 2007, 148, 1475-1485.	1.4	33
121	Characterization of benzodiazepine receptors in the bovine pineal gland: evidence for the presence of an atypical binding site. Molecular Brain Research, 1986, 1, 127-135.	2.5	32
122	A Novel Pineal-specific Product of the Oligopeptide Transporter PepT1 Gene. Journal of Biological Chemistry, 2005, 280, 16851-16860.	1.6	32
123	Pineal N-acetyltransferase Activity in Blinded and Anosmic Male Rats12. Endocrinology, 1971, 89, 1020-1023.	1.4	31
124	Adenosine Stimulates Adenosine 3′,5′-Monophosphate and Guanosine 3′,5′-Monophosphate Accumu in Rat Pinealocytes: Evidence for a Role for Adenosine in Pineal Neurotransmission*. Endocrinology, 1989, 125, 2150-2157.	lation 1.4	31
125	Localization of the hydroxyindole-O-methyltransferase gene to the pseudoautosomal region: implications for mapping of psychiatric disorders. Human Molecular Genetics, 1993, 2, 127-131.	1.4	31
126	Associations between Family Weight-Based Teasing, Eating Pathology, and Psychosocial Functioning among Adolescent Military Dependents. International Journal of Environmental Research and Public Health, 2020, 17, 24.	1.2	31

#	Article	IF	CITATIONS
127	Adrenergic stimulation of rat pineal hydroxyindole-O-methyltransferase. Brain Research, 1983, 265, 348-351.	1.1	30
128	Transcriptome analysis of the zebrafish pineal gland. Developmental Dynamics, 2009, 238, 1813-1826.	0.8	30
129	Regulation of "peripheral-type―binding sites for benzodiazepines in the pineal gland. Pharmacology Biochemistry and Behavior, 1984, 21, 821-824.	1.3	29
130	<i>NeuroD1</i> is required for survival of photoreceptors but not pinealocytes: Results from targeted gene deletion studies. Journal of Neurochemistry, 2012, 123, 44-59.	2.1	29
131	Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome. PLoS ONE, 2015, 10, e0137548.	1.1	29
132	De Novo Discovery of Serotonin N-Acetyltransferase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 5330-5338.	2.9	28
133	Regulation of Rat Pineal ?1-Adrenoceptors. Journal of Neurochemistry, 1985, 44, 63-67.	2.1	27
134	[3H]AHN 086 acylates peripheral benzodiazepine receptors in the rat pineal gland. FEBS Letters, 1989, 244, 263-267.	1.3	27
135	Mitogen-activated protein kinase phosphatase-1 (MKP-1): >100-fold nocturnal and norepinephrine-induced changes in the rat pineal gland. FEBS Letters, 2004, 577, 220-226.	1.3	27
136	Regulation of Arylalkylamine N-Acetyltransferase-2 (AANAT2, EC 2.3.1.87) in the Fish Pineal Organ: Evidence for a Role of Proteasomal Proteolysis. Endocrinology, 2001, 142, 1804-1813.	1.4	27
137	Permissive Role of Calcium in ?1-Adrenergic Stimulation of Pineal Phosphatidylinositol Phosphodiesterase (Phospholipase C) Activity. Journal of Pineal Research, 1988, 5, 553-564.	3.4	26
138	The circadian rhythm of oxytocin in primate cerebrospinal fluid: effects of destruction of the suprachiasmatic nuclei. Brain Research, 1984, 307, 384-387.	1.1	25
139	Development and Regulation of Rhodopsin Kinase in Rat Pineal and Retina. Journal of Neurochemistry, 1986, 46, 1176-1179.	2.1	25
140	Deletion of the secretory vesicle proteins IAâ€⊋ and IAâ€⊋β disrupts circadian rhythms of cardiovascular and physical activity. FASEB Journal, 2009, 23, 3226-3232.	0.2	25
141	Crx broadly modulates the pineal transcriptome. Journal of Neurochemistry, 2011, 119, 262-274.	2.1	25
142	The Mammalian Melatonin Rhythm Generating System. , 1993, , 55-71.		25
143	Ovine Pineal Indoles: Effects of l-Tryptophan or l-5-Hydroxytryptophan Administration. Journal of Neurochemistry, 1985, 44, 769-772.	2.1	24
144	Development of MEKA (phosducin), Gβ, Gγ and S-antigen in the rat pineal gland and retina. Brain Research, 1992, 585, 141-148.	1.1	24

#	Article	IF	CITATIONS
145	Genetic variability in plasma melatonin in sheep is due to pineal weight, not to variations in enzyme activities. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E792-E797.	1.8	24
146	Ovine Arylalkylamine N-Acetyltransferase in the Pineal and Pituitary Glands: Differences in Function and Regulation*. Endocrinology, 1999, 140, 972-978.	1.4	24
147	Evolution of AANAT: expansion of the gene family in the cephalochordate amphioxus. BMC Evolutionary Biology, 2010, 10, 154.	3.2	24
148	Norepinephrine Stimulates Potassium Efflux from Pinealocytes: Evidence for Involvement of Biochemical "AND―Gate Operated by Calcium and Adenosine 3′,5′-Monophosphate*. Endocrinology, 1 128, 559-569.	19 £4 ,	23
149	Rax : developmental and daily expression patterns in the rat pineal gland and retina. Journal of Neurochemistry, 2011, 118, 999-1007.	2.1	23
150	Relation of the Pineal Gland and Environmental Lighting to Thyroid Function in the Rat. Neuroendocrinology, 1970, 6, 247-254.	1.2	22
151	Photoneural Control of the Synthesis and Phosphorylation of Pineal MEKA (Phosducin). Endocrinology, 1991, 129, 3289-3298.	1.4	22
152	The Perivascular Phagocyte of the Mouse Pineal Gland: an Antigenâ€Presenting Cell. Chronobiology International, 2006, 23, 393-401.	0.9	22
153	Molecular Evolution of Multiple Arylalkylamine N-Acetyltransferase (AANAT) in Fish. Marine Drugs, 2011, 9, 906-921.	2.2	22
154	Selective Genomic Targeting by FRA-2/FOSL2 Transcription Factor. Journal of Biological Chemistry, 2011, 286, 15227-15239.	1.6	22
155	Increase caused by desmethylimipramine in the production of [3H]melatonin by isolated pineal glands. Biochemical Pharmacology, 1977, 26, 904-905.	2.0	21
156	Ethanol inhibits dual receptor stimulation of pineal cAMP and cGMP by vasoactive intestinal peptide and phenylephrine. Biochemical and Biophysical Research Communications, 1987, 147, 145-151.	1.0	21
157	Construction of a Yeast Artificial Chromosome Contig Spanning the Pseudoautosomal Region and Isolation of 25 New Sequence-Tagged Sites. Genomics, 1993, 16, 691-697.	1.3	21
158	Evidence That Proline Focuses Movement of the Floppy Loop of Arylalkylamine N-Acetyltransferase (EC) Tj ETQq0	0.0 rgBT	/Overlock 10
159	Global daily dynamics of the pineal transcriptome. Cell and Tissue Research, 2011, 344, 1-11.	1.5	21
160	Expression of melatonin synthesis genes is controlled by a circadian clock in the pike pineal organ but not in the trout. Biology of the Cell, 1998, 90, 399-405.	0.7	20
161	Melatonin synthesis in retina: cAMPâ€dependent transcriptional regulation of chicken arylalkylamine <i>N</i> â€acetyltransferase by a CREâ€like sequence and a TTATT repeat motif in the proximal promoter. Journal of Neurochemistry, 2011, 119, 6-17.	2.1	20
162	Signal transduction and regulation of melatonin synthesis in bovine pinealocytes: impact of adrenergic, peptidergic and cholinergic stimuli. Cell and Tissue Research, 2002, 309, 417-428.	1.5	18

#	Article	IF	CITATIONS
163	Phosphatidylinositol Phosphodiesterase (Phospholipase C) Activity in the Pineal Gland: Characterization and Photoneural Regulation. Journal of Neurochemistry, 1987, 48, 1033-1038.	2.1	17
164	Forskolin stimulates pinealocyte cGMP accumulation Dramatic potentiation by an α1-adrenergic → [Ca2+]imechanism involving protein kinase C. FEBS Letters, 1989, 249, 207-212.	1.3	17
165	Immunoreactive S-antigen in cerebrospinal fluid: a marker of pineal parenchymal tumors?. Journal of Neurosurgery, 1989, 70, 682-687.	0.9	17
166	Female-Specific Induction of Rat Pituitary Dentin Matrix Protein-1 by GnRH. Molecular Endocrinology, 2013, 27, 1840-1855.	3.7	17
167	Thyrocalcitonin Suppression of Hydroxyproline Release from Bone. Experimental Biology and Medicine, 1968, 127, 95-99.	1.1	16
168	Effects of 6-Hydroxy-, 6-Fluoro-, and 4,6-Difluoromelatonin on the in Vitro Pituitary Response to Luteinizing Hormone-Releasing Hormone*. Endocrinology, 1980, 106, 398-401.	1.4	16
169	Rapid and reversible activation of acetyl CoA hydrolase in intact pineal cells by disulfide exchange. Biochemical and Biophysical Research Communications, 1980, 96, 188-195.	1.0	16
170	Negative Feedback Mechanisms: Evidence that Desensitization of Pineal α1-Adrenergic Responses Involves Protein Kinase-C. Endocrinology, 1988, 123, 1425-1432.	1.4	16
171	pY RNA1-s2: A Highly Retina-Enriched Small RNA That Selectively Binds to Matrin 3 (Matr3). PLoS ONE, 2014, 9, e88217.	1.1	16
172	Daily Rhythm in Plasma N-acetyltryptamine. Journal of Biological Rhythms, 2017, 32, 195-211.	1.4	16
173	Resource: A multiâ€species multiâ€ŧimepoint transcriptome database and webpage for the pineal gland and retina. Journal of Pineal Research, 2020, 69, e12673.	3.4	16
174	Control of the circadian rhythm in pineal serotonin N-acetyltransferase activity: possible role of protein thiol: disulfide exchange. Trends in Biochemical Sciences, 1982, 7, 98-102.	3.7	15
175	Development of the rat pineal #x003B1;1-adrenoceptor. Brain Research, 1985, 325, 345-348.	1.1	15
176	Rodent Aanat: Intronic E-box sequences control tissue specificity but not rhythmic expression in the pineal gland. Molecular and Cellular Endocrinology, 2007, 270, 43-49.	1.6	15
177	Long-Term Organ Culture of Rat Anterior Pituitary Glands1. Endocrinology, 1976, 99, 1189-1198.	1.4	14
178	Effect of Acute Light Exposure Upon Melatonin Content, NAT Activity, and Nuclear Volume in the Gerbil Pineal Complex. Journal of Pineal Research, 1984, 1, 339-347.	3.4	14
179	Stimulation of Cyclic GMP Accumulation by Sodium Nitroprusside Is Potentiated via a G _s Mechanism in Intact Pinealocytes. Journal of Neurochemistry, 1995, 64, 711-717.	2.1	14
180	Neural Adrenergic/Cyclic AMP Regulation of the Immunoglobulin E Receptor α-Subunit Expression in the Mammalian Pinealocyte. Journal of Biological Chemistry, 2007, 282, 32758-32764.	1.6	14

#	Article	IF	CITATIONS
181	The <i>Lhx4</i> homeobox transcript in the rat pineal gland: Adrenergic regulation and impact on transcripts encoding melatoninâ€synthesizing enzymes. Journal of Pineal Research, 2020, 68, e12616.	3.4	14
182	Cardiac glycosides stimulate phospholipase C activity in rat pinealocytes. Biochemical and Biophysical Research Communications, 1987, 142, 819-825.	1.0	13
183	Rat pineal Gsa, Gia and Goa: relative abundance and development. Brain Research, 1992, 572, 232-235.	1.1	13
184	A new <i>cis</i> -acting regulatory element driving gene expression in the zebrafish pineal gland. Bioinformatics, 2009, 25, 559-562.	1.8	13
185	Norepinephrine Causes a Biphasic Change in Mammalian Pinealocye Membrane Potential: Role of α1B-Adrenoreceptors, Phospholipase C, and Ca2+. Endocrinology, 2011, 152, 3842-3851.	1.4	13
186	In vitro [35S]methionine-labeled protein synthesis in microdissected discrete brain areas: Marked regional differences revealed by two-dimensional gel electrophoresis. Electrophoresis, 1984, 5, 116-121.	1.3	12
187	Evolution of melatonin as a night signal: Contribution from a primitive photosynthetic organism. Molecular and Cellular Neurosciences, 1992, 3, 181-183.	1.0	12
188	Rat pineal α ₁ â€adrenoceptor subtypes: studies using radioligand binding and reverse transcriptionâ€polymerase chain reaction analysis. British Journal of Pharmacology, 1996, 118, 1246-1252.	2.7	12
189	A neuroanatomical and physiological study of the non-image forming visual system of the cone-rod homeobox gene (Crx) knock out mouse. Brain Research, 2010, 1343, 54-65.	1.1	12
190	Ovine Arylalkylamine N-Acetyltransferase in the Pineal and Pituitary Glands: Differences in Function and Regulation. Endocrinology, 1999, 140, 972-978.	1.4	12
191	S–ANTIGEN IMMUNOCYTOCHEMISTRY. , 1986, , 343-355.		11
192	A Simple and Rapid Method for the Purification of Ovine Pineal Arylalkylamine N-Acetyltransferase. Journal of Neurochemistry, 1987, 48, 580-585.	2.1	10
193	Noradrenergic control of the synthesis of two rat pineal proteins. Brain Research, 1990, 517, 25-34.	1.1	10
194	The pineal adrenergic → cyclic GMP response develops two weeks after the adrenergic → cyclic AMP response. Developmental Brain Research, 1992, 68, 144-147.	2.1	10
195	Retinoic Acid Increases Hydroxyindole-O-Methyltransferase Activity and mRNA in Human Y-79 Retinoblastoma Cells. Journal of Neurochemistry, 2002, 67, 1032-1038.	2.1	10
196	Enzymatic and cellular study of a serotonin N-acetyltransferase phosphopantetheine-based prodrug. Bioorganic and Medicinal Chemistry, 2007, 15, 2147-2155.	1.4	10
197	RGS2 is a feedback inhibitor of melatonin production in the pineal gland. FEBS Letters, 2013, 587, 1392-1398.	1.3	10
198	Circadian regulation and molecular role of the <i>Bsx</i> homeobox gene in the adult pineal gland. Journal of Pineal Research, 2020, 68, e12629.	3.4	10

#	Article	IF	CITATIONS
199	Cerebrospinal Fluid Melatonin. , 1980, , 579-589.		10
200	Stimulus Deprivation Increases Pineal Gs?and G?. Journal of Neurochemistry, 1992, 59, 1356-1362.	2.1	9
201	Effects of fluorine analogs of norepinephrine on stimulation of cyclic adenosine 3′,5′- monophosphate and binding to β-adrenergic receptors in intact pinealocytes. Biochemical Pharmacology, 1981, 30, 1085-1089.	2.0	8
202	Purification of Rat Pineal Hydroxyindole-O-Methyltransferase Using S-Adenosyl-L-Homocysteine Agarose Chromatography. Journal of Pineal Research, 1986, 3, 389-395.	3.4	8
203	Single Cell Sequencing of the Pineal Gland: The Next Chapter. Frontiers in Endocrinology, 2019, 10, 590.	1.5	8
204	Alternative Isoform Analysis of Ttc8 Expression in the Rat Pineal Gland Using a Multi-Platform Sequencing Approach Reveals Neural Regulation. PLoS ONE, 2016, 11, e0163590.	1.1	8
205	Hydroxyindole-O-methyltransferase in Y-79 cells: regulation by serum. Brain Research, 1996, 727, 118-124.	1.1	7
206	Muscleblindâ€like 2: circadian expression in the mammalian pineal gland is controlled by an adrenergic AMP mechanism. Journal of Neurochemistry, 2009, 110, 756-764.	2.1	7
207	Rat arylalkylamine N-acetyltransferase gene: Upstream and intronic components of a bipartite promoter. , 1999, 91, 699.		7
208	Cholera toxin-induced Gs ${ m \hat{l}\pm}$ down-regulation in neural tissue: studies on the pineal gland. Brain Research, 1994, 638, 151-156.	1.1	6
209	Subfornical organ: Effects of salt loading and water deprivation on in vitro radioamino acid incorporation into individual proteins. Brain Research, 1986, 372, 107-114.	1.1	5
210	The pineal family of aromatic amineN-acetyltransferases. BioEssays, 1985, 3, 217-220.	1.2	4
211	Research report. Brain Research, 1996, 713, 8-16.	1.1	4
212	BETA-ADRENERGIC REGULATION OF INDOLE METABOLISM IN THE PINEAL GLAND. , 1973, , 321-325.		4
213	A PROTECTIVE ROLE OF NERVE ENDINGS IN THE STRESS-STIMULATED INCREASE IN PINEAL N-ACETYLTRANSFERASE ACTIVITY. , 1976, , 119-128.		4
214	The Molecular Basis of the Pineal Melatonin Rhythm. , 1998, , .		4
215	The Timezyme and Melatonin: Essential Elements of Vertebrate Timekeeping. , 2017, , 503-520.		3
216	Expression of melatonin synthesis genes is controlled by a circadian clock in the pike pineal organ but not in the trout. Biology of the Cell, 1998, 90, 399-405.	0.7	3

#	Article	IF	CITATIONS
217	The Pineal Gene Expression Party: Who's the Surprise Guest?. Endocrinology, 2007, 148, 1463-1464.	1.4	2
218	The Pineal Gland and Melatonin. , 2016, , 312-322.e5.		2
219	Isolation of cDNAs for Bovine S-Antigen. , 1986, , 331-342.		2
220	Adrenergic-cyclic AMP regulation of biopterin biosynthesis in the pineal gland. , 1981, , 231-239.		1
221	ADRENERGIC REGULATION OF CYCLIC AMP AND CYCLIC GMP IN RAT PINEALOCYTES. , 1986, , 293-305.		1
222	Inactivation of pineal N-acetyltransferase by disulfide exchange: a possible role of S-S peptides. , 1981, , 711-722.		1
223	Beta-adrenergic regulation of serotonin in the cultured rat pineal gland. Life Sciences, 1973, 13, lxxxvi-lxxxvii.	2.0	0
224	Phospholipid-Protein Kinase C Involvement in the Adrenergic Regulation of Pinealocyte Cyclic AMP: A Model of How Modulators Act?. , 1986, , 113-120.		0