Leo J Y Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3252962/publications.pdf

Version: 2024-02-01

361413 677142 2,436 22 20 22 h-index citations g-index papers 22 22 22 4475 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature Medicine, 2017, 23, 1352-1361.	30.7	279
2	N-methyladenine DNA Modification in Glioblastoma. Cell, 2018, 175, 1228-1243.e20.	28.9	236
3	The RNA m6A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells. Cancer Discovery, 2021, 11, 480-499.	9.4	218
4	Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. Cell Stem Cell, 2018, 22, 514-528.e5.	11.1	185
5	Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock. Cancer Discovery, 2019, 9, 1556-1573.	9.4	172
6	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	27.8	170
7	Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature, 2017, 547, 355-359.	27.8	156
8	Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience, 2017, 20, 661-673.	14.8	153
9	Glioma Stem Cell–Specific Superenhancer Promotes Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling. Cancer Discovery, 2019, 9, 1248-1267.	9.4	120
10	Ibrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance. Science Translational Medicine, 2018, 10, .	12.4	112
11	Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Science Translational Medicine, 2019, 11, .	12.4	112
12	MYC-Regulated Mevalonate Metabolism Maintains Brain Tumor–Initiating Cells. Cancer Research, 2017, 77, 4947-4960.	0.9	91
13	Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. Journal of Experimental Medicine, 2019, 216, 1071-1090.	8.5	89
14	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	28.9	79
15	CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies. Cancer Discovery, 2021, 11, 1192-1211.	9.4	78
16	CDC20 maintains tumor initiating cells. Oncotarget, 2015, 6, 13241-13254.	1.8	53
17	Inhibiting DNA-PK induces glioma stem cell differentiation and sensitizes glioblastoma to radiation in mice. Science Translational Medicine, 2021, 13, .	12.4	37
18	Type I Interferon Regulates a Coordinated Gene Network to Enhance Cytotoxic T Cell–Mediated Tumor Killing. Cancer Discovery, 2020, 10, 382-393.	9.4	31

#	Article	IF	CITATIONS
19	Transcription Elongation Machinery Is a Druggable Dependency and Potentiates Immunotherapy in Glioblastoma Stem Cells. Cancer Discovery, 2022, 12, 502-521.	9.4	29
20	Inhibition of ID1–BMPR2 Intrinsic Signaling Sensitizes Glioma Stem Cells to Differentiation Therapy. Clinical Cancer Research, 2018, 24, 383-394.	7.0	26
21	Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. Journal of Experimental Medicine, 2021, 218, .	8.5	9
22	SUFU: The Jekyll and Hyde of the Cerebellum. Developmental Cell, 2019, 48, 131-132.	7.0	1