Dianne M Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3252790/publications.pdf

Version: 2024-02-01

64 papers

2,400 citations

201674 27 h-index 49 g-index

64 all docs

64
docs citations

64 times ranked 2176 citing authors

#	Article	IF	CITATIONS
1	α ₁ -Adrenergic Receptor Subtypes. Circulation Research, 1996, 78, 737-749.	4.5	365
2	Multiple Signaling States of G-Protein-Coupled Receptors. Pharmacological Reviews, 2005, 57, 147-161.	16.0	229
3	Overexpression of the $\hat{l}\pm 1B$ -adrenergic receptor causes apoptotic neurodegeneration: Multiple system atrophy. Nature Medicine, 2000, 6, 1388-1394.	30.7	123
4	Activation of the $\hat{l}\pm 1b$ -Adrenergic Receptor Is Initiated by Disruption of an Interhelical Salt Bridge Constraint. Journal of Biological Chemistry, 1996, 271, 28318-28323.	3.4	117
5	Hypotension, Autonomic Failure, and Cardiac Hypertrophy in Transgenic Mice Overexpressing the $\hat{l}\pm 1B$ -Adrenergic Receptor. Journal of Biological Chemistry, 2001, 276, 13738-13743.	3.4	92
6	Localization of the mouse $\hat{l}\pm 1A$ -adrenergic receptor (AR) in the brain: $\hat{l}\pm 1AAR$ is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. Journal of Comparative Neurology, 2006, 497, 209-222.	1.6	92
7	The Evolutionarily Triumphant G-Protein-Coupled Receptor. Molecular Pharmacology, 2003, 63, 1202-1205.	2.3	88
8	The Unique Nature of the Serine Interactions for $\hat{l}\pm 1$ -Adrenergic Receptor Agonist Binding and Activation. Journal of Biological Chemistry, 1996, 271, 6322-6327.	3.4	86
9	Identification of Critical Determinants of $\hat{l}\pm 1$ -Adrenergic Receptor Subtype Selective Agonist Binding. Journal of Biological Chemistry, 1995, 270, 23189-23195.	3.4	83
10	Long-Term \hat{l}_{\pm} _{1A} -Adrenergic Receptor Stimulation Improves Synaptic Plasticity, Cognitive Function, Mood, and Longevity. Molecular Pharmacology, 2011, 80, 747-758.	2.3	62
11	G-Protein-Coupled Receptors in Adult Neurogenesis. Pharmacological Reviews, 2012, 64, 645-675.	16.0	62
12	Modulation of Immune Cell Function by $\hat{l}\pm 1$ -Adrenergic Receptor Activation. Current Topics in Membranes, 2011, 67, 113-138.	0.9	57
13	$\hat{l}\pm 1$ -Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Frontiers in Pharmacology, 2020, 11, 581098.	3.5	55
14	Mouse ?1B-adrenergic receptor is expressed in neurons and NG2 oligodendrocytes. Journal of Comparative Neurology, 2004, 478, 1-10.	1.6	53
15	α ₁ -Adrenergic Receptor Stimulates Interleukin-6 Expression and Secretion through Both mRNA Stability and Transcriptional Regulation: Involvement of p38 Mitogen-Activated Protein Kinase and Nuclear Factor-κB. Molecular Pharmacology, 2009, 76, 144-152.	2.3	53
16	?- but not ?-adrenergic receptors precondition the ischemic heart by a staurosporine-sensitive, chelerythrine-insensitive mechanism. Cardiovascular Research, 2005, 65, 436-445.	3.8	52
17	Cardiac and neuroprotection regulated by $\hat{l}\pm < \text{sub} > 1 < / \text{sub} > - \text{adrenergic receptor subtypes}$. Journal of Receptor and Signal Transduction Research, 2011, 31, 98-110.	2.5	52
18	Identification of a Conserved Switch Residue Responsible for Selective Constitutive Activation of the Î ² 2-Adrenergic Receptor. Journal of Biological Chemistry, 1998, 273, 3401-3407.	3.4	50

#	Article	IF	Citations
19	Synergism of Constitutive Activity in $\hat{l}\pm 1$ -Adrenergic Receptor Activation. Biochemistry, 1997, 36, 633-639.	2.5	48
20	From Plants to Man: The GPCR "Tree of Life†Fig. 1 Molecular Pharmacology, 2005, 67, 1383-1384.	2.3	42
21	Structure–function of α1-adrenergic receptors. Biochemical Pharmacology, 2007, 73, 1051-1062.	4.4	42
22	Mice expressing the $\hat{l}\pm 1B$ -adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. Journal of Neurochemistry, 2002, 83, 623-634.	3.9	41
23	Genetic Profiling of $\hat{l}\pm 1$ -Adrenergic Receptor Subtypes by Oligonucleotide Microarrays: Coupling to Interleukin-6 Secretion but Differences in STAT3 Phosphorylation and gp-130. Molecular Pharmacology, 2003, 63, 1104-1116.	2.3	39
24	\hat{l}_{\pm} ₁ -Adrenergic Receptors Regulate Neurogenesis and Gliogenesis. Molecular Pharmacology, 2009, 76, 314-326.	2.3	34
25	The $\hat{l}\pm 1B$ -adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovascular Research, 2003, 60, 598-607.	3.8	33
26	Systemic Overexpression of the α _{1B} â€Adrenergic Receptor in Mice: An Animal Model of Epilepsy. Epilepsia, 2002, 43, 1324-1329.	5.1	30
27	 $\frac{1}{2}$ 	2.5	30
28	Gene expression profile of neurodegeneration induced by Â1B-adrenergic receptor overactivity: NMDA/GABAA dysregulation and apoptosis. Brain, 2003, 126, 2667-2681.	7.6	27
29	Gene expression profiling of $\hat{l}\pm 1b$ -adrenergic receptor-induced cardiac hypertrophy by oligonucleotide arrays. Cardiovascular Research, 2003, 57, 443-455.	3.8	26
30	A unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. PLoS ONE, 2017, 12, e0170456.	2.5	26
31	Cloning, Cell-Type Specificity, and Regulatory Function of the Mouse $\hat{l}\pm 1B$ -Adrenergic Receptor Promoter. Molecular Pharmacology, 1999, 56, 1288-1297.	2.3	25
32	Both \hat{l}_{\pm} - and \hat{l}_{\pm} -adrenergic receptors crosstalk to downregulate \hat{l}^2 -ARs in mouse heart: coupling to differential PTX-sensitive pathways. Journal of Molecular and Cellular Cardiology, 2005, 39, 777-784.	1.9	22
33	Novel Aromatic Residues in Transmembrane Domains IV and V Involved in Agonist Binding at $\hat{l}\pm 1$ a-Adrenergic Receptors. Journal of Biological Chemistry, 2000, 275, 11698-11705.	3.4	20
34	Current Developments on the Role of $\hat{l}\pm 1$ -Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Frontiers in Cell and Developmental Biology, 2021, 9, 652152.	3.7	20
35	Long-term $\hat{l}\pm 1B$ -adrenergic receptor activation shortens lifespan, while $\hat{l}\pm 1A$ -adrenergic receptor stimulation prolongs lifespan in association with decreased cancer incidence. Age, 2014, 36, 9675.	3.0	19
36	The role of $\hat{l}\pm <$ sub>1-adrenergic receptors in regulating metabolism: increased glucose tolerance, leptin secretion and lipid oxidation. Journal of Receptor and Signal Transduction Research, 2017, 37, 124-132.	2.5	17

#	Article	lF	Citations
37	$\langle i \rangle \hat{l} \pm \langle i \rangle \langle sub \rangle 1A \langle sub \rangle$ -Adrenergic Receptors Regulate Cardiac Hypertrophy In Vivo Through Interleukin-6 Secretion. Molecular Pharmacology, 2013, 83, 939-948.	2.3	14
38	Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. International Journal of Molecular Sciences, 2021, 22, 5783.	4.1	13
39	Novel proteins associated with human dilated cardiomyopathy: selective reduction in $\hat{l}\pm 1$ A-adrenergic receptors and increased desensitization proteins. Journal of Receptor and Signal Transduction Research, 2013, 33, 96-106.	2.5	11
40	Polymorphic G-Protein-Coupled Receptors and Associated Diseases. Receptors and Channels, 2002, 8, 57-64.	1.1	11
41	$\hat{l}\pm 1$ A-Adrenergic receptor differentially regulates STAT3 phosphorylation through PKC $\hat{l}\mu$ and PKC $\hat{l}\mu$ in myocytes. Journal of Receptor and Signal Transduction Research, 2012, 32, 76-86.	2.5	10
42	Bulk is a Determinant of Oxymetazoline Affinity for the ?1A-Adrenergic Receptor. Receptors and Channels, 2004, 10, 109-116.	1.1	5
43	$\hat{l}\pm 1$ -Adrenergic receptors increase glucose oxidation under normal and ischemic conditions in adult mouse cardiomyocytes. Journal of Receptor and Signal Transduction Research, 2021, 41, 138-144.	2.5	5
44	Reply to "Overstimulation of the α1B-adrenergic receptor causes a "seizure plus―syndrome― Nature Medicine, 2001, 7, 132-133.	30.7	3
45	Bulk is a Determinant of Oxymetazoline Affinity for the α _{1A} -Adrenergic Receptor. Receptors and Channels, 2004, 10, 109-116.	1.1	3
46	Norepinephrine, through activation of Alphaâ€1A ARs, stimulates production of new neurons, leading to an alleviation of depression and anxiety. FASEB Journal, 2010, 24, 1058.7.	0.5	3
47	Alpha‶A Adrenergic Receptor Overexpression Protects Hippocampal Interneurons. FASEB Journal, 2007, 21, A1209.	0.5	3
48	Polymorphic G-Protein-Coupled Receptors and Associated Diseases. Receptors and Channels, 2002, 8, 57-64.	1.1	2
49	Alpha†adrenergic receptor regulation of seizures and neurodegeneration. FASEB Journal, 2008, 22, 748.12.	0.5	2
50	Alpha 1Aâ€Adrenergic Receptor Signaling Protects the Heart From Ischemic Injury Through an ERKâ€Dependent Mechanism. FASEB Journal, 2008, 22, 1130.7.	0.5	1
51	The Role of G-Protein-Coupled Receptors in Adult Neurogenesis. Methods in Pharmacology and Toxicology, 2014, , 389-411.	0.2	1
52	Polymorphic G-protein-coupled receptors and associated diseases. Receptors and Channels, 2002, 8, 57-64.	1.1	1
53	A Mouse Model for Multiple System Atrophy. , 2005, , 585-593.		0
54	Alphaâ€1 adrenergic receptors regulate neurogenesis. FASEB Journal, 2007, 21, A423.	0.5	0

#	Article	IF	CITATIONS
55	Alphaâ€1A adrenergic receptors regulate neurogenesis and cognitive function. FASEB Journal, 2008, 22, 812.4.	0.5	O
56	î±1â€Adrenergic Receptors Regulate Neurogenesis and Differentiation of Interneurons, Dopaminergic, and/or Noradrenergic Neurons. FASEB Journal, 2009, 23, LB363.	0.5	0
57	Alphaâ€1A adrenergic receptor regulation of learning and memory in mice. FASEB Journal, 2009, 23, 946.5.	0.5	O
58	Chronic Alphaâ€1A Adrenergic Receptor Stimulation Reduces Anxiety in Mice. FASEB Journal, 2010, 24, 768.6.	0.5	0
59	Alphaâ€1A Adrenergic Receptor Stimulation Enhances Learning & Memory in Mice. FASEB Journal, 2010, 24, 582.3.	0.5	O
60	Agedâ€Constitutively Active Mutant α1A Adrenergic Receptor Mice have Enhanced LTP in the Hippocampal CA1 Region. FASEB Journal, 2011, 25, lb418.	0.5	0
61	Chronic $\hat{l}\pm 1A$ AR Stimulation May Increase Adult Neurogenesis and Parvalbumin Interneurons. FASEB Journal, 2012, 26, 1044.1.	0.5	O
62	Alpha1A Adrenergic Receptor Stimulation Improves Mood in Mice. FASEB Journal, 2012, 26, 709.6.	0.5	0
63	Chronic $\hat{l}\pm 1A$ AR stimulation may increase adult neurogenesis and parvalbumin interneurons. FASEB Journal, 2013, 27, 1146.8.	0.5	O
64	\hat{l}_{\pm} 1A adrenergic receptor influences on progenitor cell fate in the adult hippocampus. FASEB Journal, 2013, 27, 1177.11.	0.5	0