Xiaoxing Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/325222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A host–guest self-assembly strategy to enhance π-electron densities in ultrathin porous carbon nitride nanocages toward highly efficient hydrogen evolution. Chemical Engineering Journal, 2022, 430, 132880.	12.7	33
2	Fe ₂ O ₃ /FePO ₄ /FeOOH Ternary Stepped Energy Band Heterojunction Photoanode with Cascadeâ€Driven Charge Transfer and Enhanced Photoelectrochemical Performance. ChemSusChem, 2022, 15, .	6.8	5
3	K ⁺ -Doped ZnO/g-C ₃ N ₄ Heterojunction: Controllable Preparation, Efficient Charge Separation, and Excellent Photocatalytic VOC Degradation Performance. Industrial & Engineering Chemistry Research, 2022, 61, 187-197.	3.7	13
4	Photoelectrochemical properties of TiO2/g-C3N4 composited electrodes fabricated by a co-electrodeposited method. Journal Physics D: Applied Physics, 2021, 54, 145104.	2.8	4
5	Photothermal synergic catalytic degradation of the gaseous organic pollutant isopropanol in oxygen vacancies utilizing ZnFe ₂ O ₄ . Journal of Chemical Research, 2021, 45, 773-780.	1.3	2
6	Fe2O3 nanorods/CuO nanoparticles p-n heterojunction photoanode: Effective charge separation and enhanced photoelectrochemical properties. Journal of Colloid and Interface Science, 2021, 602, 32-42.	9.4	39
7	Self-Assembly Mechanism of Complex Corrugated Particles. Journal of the American Chemical Society, 2021, 143, 19655-19667.	13.7	20
8	Preparation of K ⁺ doped ZnO nanorods with enhanced photocatalytic performance under visible light. Journal Physics D: Applied Physics, 2020, 53, 035301.	2.8	11
9	Large-Scale Preparation of g-C ₃ N ₄ Porous Nanotubes with Enhanced Photocatalytic Activity by Using Salicylic Acid and Melamine. Industrial & Engineering Chemistry Research, 2020, 59, 1065-1072.	3.7	33
10	Interfacial charge modulation: carbon quantum dot implanted carbon nitride double-deck nanoframes for robust visible-light photocatalytic tetracycline degradation. Nanoscale, 2020, 12, 3135-3145.	5.6	45
11	High specific surface area defective g-C3N4 nanosheets with enhanced photocatalytic activity prepared by using glyoxylic acid mediated melamine. Materials Chemistry and Physics, 2020, 256, 123755.	4.0	24
12	A low-cost and high-yield approach for preparing g-C3N4 with a large specific surface area and enhanced photocatalytic activity by using formaldehyde-treated melamine. Journal of Alloys and Compounds, 2020, 845, 156293.	5.5	22
13	Hierarchical Self-assembly of Well-Defined Louver-Like P-Doped Carbon Nitride Nanowire Arrays with Highly Efficient Hydrogen Evolution. Nano-Micro Letters, 2020, 12, 52.	27.0	45
14	Role of Acetaldehyde on Synthesizing Large Surface Area Porous g-C ₃ N ₄ Nanosheets with Enhanced Photocatalytic Performance by Using Acetaldehyde–Melamine. Nano, 2020, 15, 2050066.	1.0	1
15	Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable <i>in situ</i> surface engineering and morphology. Nanoscale, 2019, 11, 16393-16405.	5.6	45
16	Steering charge kinetics boost the photocatalytic activity of graphitic carbon nitride: heteroatom-mediated spatial charge separation and transfer. Journal Physics D: Applied Physics, 2019, 53, 015502.	2.8	28
17	Synthesis of Mo-doped ultrathin BiVO ₄ nanosheets with efficient visible-light-driven photocatalytic activity. International Journal of Modern Physics B, 2019, 33, 1950270.	2.0	3
18	Revelation solvent effects: excited state hydrogen bond and proton transfer of 2-(benzo[<i>d</i>]thiazol-2-yl)-3-methoxynaphthalen-1-ol. Organic Chemistry Frontiers, 2019, 6, 2780-2787.	4.5	19

XIAOXING FAN

#	Article	IF	CITATIONS
19	Porous size dependent g-C3N4 for efficient photocatalysts: Regulation synthesizes and physical mechanism. Materials Today Energy, 2019, 13, 11-21.	4.7	41
20	Doping-Induced Hydrogen-Bond Engineering in Polymeric Carbon Nitride To Significantly Boost the Photocatalytic H ₂ Evolution Performance. ACS Applied Materials & Interfaces, 2019, 11, 17341-17349.	8.0	71
21	Protonated supramolecular complex-induced porous graphitic carbon nitride nanosheets as bifunctional catalyst for water oxidation and organic pollutant degradation. Journal of Materials Science, 2019, 54, 7637-7650.	3.7	16
22	High-yield and low-cost method to synthesize large-area porous g-C3N4 nanosheets with improved photocatalytic activity for gaseous nitric oxide and 2-propanol photodegradation. Applied Surface Science, 2019, 464, 577-585.	6.1	47
23	The photoelectrochemical properties of Sn2Nb2O7 photoanode. Journal of Alloys and Compounds, 2019, 773, 1033-1039.	5.5	5
24	Self-assembled hierarchical carbon/g-C ₃ N ₄ composite with high photocatalytic activity. Journal Physics D: Applied Physics, 2018, 51, 135501.	2.8	12
25	Hydrothermal Synthesis and Visible Light Photocatalytic Properties of Bi2O2CO3/Bi2WO6 Composite. Catalysis Letters, 2018, 148, 41-50.	2.6	13
26	Site-selected N vacancy of g-C3N4 for photocatalysis and physical mechanism. Applied Materials Today, 2018, 13, 329-338.	4.3	66
27	Facile <i>in situ</i> construction of mediator-free direct Z-scheme g-C ₃ N ₄ /CeO ₂ heterojunctions with highly efficient photocatalytic activity. Journal Physics D: Applied Physics, 2018, 51, 275302.	2.8	110
28	In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity. Journal of Materials Science, 2018, 53, 15882-15894.	3.7	52
29	Mechanism of surface plasmon-catalyzed reaction of fluorine phenylboronic acid. Journal of Nanophotonics, 2018, 12, 1.	1.0	1
30	Facile transformation of low cost melamine–oxalic acid into porous graphitic carbon nitride nanosheets with high visible-light photocatalytic performance. RSC Advances, 2017, 7, 14372-14381.	3.6	36
31	Ag-loaded mesoporous Pb3Nb2O8 photocatalysts with enhanced activity under visible-light irradiation. Chinese Journal of Catalysis, 2017, 38, 83-91.	14.0	9
32	Photoelectrochemical Properties of Pb ₃ Nb ₄ O ₁₃ as a New Photoanode Material. Journal of the Electrochemical Society, 2017, 164, H1047-H1052.	2.9	2
33	An artful and simple synthetic strategy for fabricating low carbon residual porous g-C ₃ N ₄ with enhanced visible-light photocatalytic properties. RSC Advances, 2016, 6, 83730-83737.	3.6	12
34	<i>In Situ</i> Transmission Electron Microscopy Observation of Sodiation–Desodiation in a Long Cycle, High-Capacity Reduced Graphene Oxide Sodium-Ion Battery Anode. Chemistry of Materials, 2016, 28, 6528-6535.	6.7	79
35	Effects of annealing pressure and Ar+ sputtering cleaning on Al-doped ZnO films. Applied Surface Science, 2016, 387, 779-783.	6.1	9
36	Band Structure Engineering of Carbon Nitride: In Search of a Polymer Photocatalyst with High Photooxidation Property. ACS Catalysis, 2013, 3, 912-919.	11.2	450

XIAOXING FAN

#	Article	IF	CITATIONS
37	Solvothermal synthesis of core–shell ZnO hollow microhemispheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 46-50.	4.7	7
38	Facile Method To Synthesize Mesoporous Multimetal Oxides (ATiO ₃ , A = Sr, Ba) with Large Specific Surface Areas and Crystalline Pore walls. Chemistry of Materials, 2010, 22, 1276-1278.	6.7	45
39	Effect of crystal growth on mesoporous Pb3Nb4O13 formation, and their photocatalytic activity under visible-light irradiation. Journal of Materials Chemistry, 2010, 20, 2865.	6.7	19
40	A small and robust Al(III)-chemosensor based on bis-Schiff base N,N′-(1,4-phenylenedimethylidyne)bis-1,4-benzene diamine. Inorganic Chemistry Communication, 2008, 11, 203-206.	3.9	38
41	Role of phosphorus in synthesis of phosphated mesoporous TiO2 photocatalytic materials by EISA method. Applied Surface Science, 2008, 254, 5191-5198.	6.1	31
42	The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2. Journal of Molecular Catalysis A, 2008, 284, 155-160.	4.8	154
43	Preparation of Mesostructured Lamellar Zirconia. Materials and Manufacturing Processes, 2007, 22, 705-709.	4.7	5
44	Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Applied Catalysis B: Environmental, 2007, 69, 138-144.	20.2	881
45	Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Materials Chemistry and Physics, 2007, 103, 162-167.	4.0	293
46	Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Applied Surface Science, 2007, 253, 8500-8506.	6.1	173
47	A Novel ZnII-Sensitive Fluorescent Chemosensor Assembled within Aminopropyl-Functionalized Mesoporous SBA-15. Inorganic Chemistry, 2006, 45, 6844-6850.	4.0	112
48	Coreâ~'Shell Microspherical Ti1-xZrxO2 Solid Solution Photocatalysts Directly from Ultrasonic Spray Pyrolysis. Journal of Physical Chemistry B, 2006, 110, 19323-19328.	2.6	79