
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/325076/publications.pdf Version: 2024-02-01

ANIL K RAIDAL

#	Article	IF	CITATIONS
1	Responsive polymers in controlled drug delivery. Progress in Polymer Science, 2008, 33, 1088-1118.	24.7	1,161
2	Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chemical Engineering Journal, 2015, 279, 344-352.	12.7	198
3	Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydrate Polymers, 2003, 53, 271-279.	10.2	184
4	Controlled pesticide release from biodegradable polymers. Open Chemistry, 2014, 12, 453-469.	1.9	164
5	Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. Reactive and Functional Polymers, 2002, 53, 125-141.	4.1	148
6	Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. Journal of Materials Science: Materials in Medicine, 2006, 17, 345-358.	3.6	123
7	Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 236, 81-90.	4.7	113
8	Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydrate Polymers, 2009, 76, 222-231.	10.2	111
9	Green synthesis of graphene sand composite (GSC) as novel adsorbent for efficient removal of Cr (VI) ions from aqueous solution. Journal of Water Process Engineering, 2015, 5, 83-94.	5.6	104
10	Water sorption through a semi-interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains. Reactive and Functional Polymers, 2002, 50, 9-21.	4.1	102
11	Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles. Carbohydrate Polymers, 2012, 87, 300-308.	10.2	91
12	Real time in vitro studies of doxorubicin release from PHEMA nanoparticles. Journal of Nanobiotechnology, 2009, 7, 5.	9.1	90
13	Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: Correlation with biocompatibility aspects. EXPRESS Polymer Letters, 2008, 2, 201-213.	2.1	84
14	Evaluation of poly (vinyl alcohol) based cryogel–zinc oxide nanocomposites for possible applications as wound dressing materials. Materials Science and Engineering C, 2016, 65, 408-418.	7.3	78
15	Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2019, 177, 211-218.	5.0	78
16	Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors. Carbohydrate Polymers, 2011, 83, 876-882.	10.2	77
17	Release dynamics of ciprofloxacin from swellable nanocarriers of poly(2-hydroxyethyl methacrylate): an in vitro study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 453-462.	3.3	71
18	Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environmental Nanotechnology, Monitoring and Management, 2016, 6, 32-44.	2.9	71

#	Article	IF	CITATIONS
19	Preparation and characterization of biocompatible spongy cryogels of poly(vinyl alcohol)-gelatin and study of water sorption behaviour. Polymer International, 2005, 54, 1233-1242.	3.1	66
20	Genipin-modified gelatin nanocarriers as swelling controlled drug delivery system for in vitro release of cytarabine. Materials Science and Engineering C, 2016, 61, 457-465.	7.3	60
21	In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose. Polymer International, 2005, 54, 1524-1536.	3.1	57
22	Investigation on magnetically controlled delivery of doxorubicin from superparamagnetic nanocarriers of gelatin crosslinked with genipin. Journal of Materials Science: Materials in Medicine, 2010, 21, 1573-1586.	3.6	57
23	Preparation and characterization of tetracycline-loaded interpenetrating polymer networks of carboxymethyl cellulose and poly(acrylic acid): water sorption and drug release study. Polymer International, 2005, 54, 1347-1356.	3.1	54
24	Preparation and characterization of spongy cryogels of poly(vinyl alcohol)-casein system: water sorption and blood compatibility study. Polymer International, 2005, 54, 796-806.	3.1	53
25	In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles. Journal of Applied Polymer Science, 2006, 101, 2320-2332.	2.6	53
26	Preparation and characterization of electrically conductive composites of poly(vinyl) Tj ETQq0 0 0 rgBT /Overle Letters, 2008, 2, 26-39.	ock 10 Tf 50 2.1) 467 Td (alcc 50
27	Ionizable interpenetrating polymer networks of carboxymethyl cellulose and polyacrylic acid: Evaluation of water uptake. Journal of Applied Polymer Science, 2004, 93, 2054-2065.	2.6	48
28	Preparation and characterization of novel biocompatible cryogels of poly (vinyl alcohol) and egg-albumin and their water sorption study. Journal of Materials Science: Materials in Medicine, 2006, 17, 49-61.	3.6	48
29	Adsorption of polyvinylalcohol onto Fuller's earth surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 220, 117-130.	4.7	47
30	Magnetically Guided Release of Ciprofloxacin from Superparamagnetic Polymer Nanocomposites. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 893-918.	3.5	47
31	Iron crosslinked alginate as novel nanosorbents for removal of arsenic ions and bacteriological contamination from water. Journal of Materials Research and Technology, 2014, 3, 195-202.	5.8	47
32	Water sorption dynamics of a binary copolymeric hydrogel of 2-hydroxyethyl methacrylate (HEMA). Journal of Biomaterials Science, Polymer Edition, 2002, 13, 237-256.	3.5	43
33	An inÂvitro release study of 5-fluoro-uracil (5-FU) from swellable poly-(2-hydroxyethyl methacrylate) (PHEMA) nanoparticles. Journal of Materials Science: Materials in Medicine, 2009, 20, 1103-1114.	3.6	43
34	Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. Journal of Materials Science: Materials in Medicine, 2011, 22, 357-369.	3.6	43
35	Release and diffusion of sulfamethoxazole through acrylamide-based hydrogel. Journal of Applied Polymer Science, 2001, 81, 1238-1247.	2.6	42
36	Atomic force microscopy enabled roughness analysis of nanostructured poly (diaminonaphthalene) doped poly (vinyl alcohol) conducting polymer thin films. Micron, 2016, 90, 12-17.	2.2	42

ANIL K BAJPAI

#	Article	IF	CITATIONS
37	Swelling kinetics of a hydrogel of poly(ethylene glycol) and poly(acrylamide-co-styrene). Journal of Applied Polymer Science, 2002, 85, 1419-1428.	2.6	34
38	Dynamic Column Adsorption Studies of Toxic Cr(VI) Ions onto Iron Oxide Loaded Gelatin Nanoparticles. Journal of Dispersion Science and Technology, 2011, 32, 1353-1362.	2.4	34
39	Designing casein-coated iron oxide nanostructures (CCIONPs) as superparamagnetic core–shell carriers for magnetic drug targeting. Progress in Biomaterials, 2015, 4, 39-53.	4.5	34
40	Immobilization of ?-amylase in vinyl-polymer-based interpenetrating polymer networks. Colloid and Polymer Science, 2003, 282, 76-83.	2.1	33
41	Adsorption of a blood protein on to hydrophilic sponges based on poly(2-hydroxyethyl methacrylate). Journal of Materials Science: Materials in Medicine, 2004, 15, 583-592.	3.6	33
42	Removal of malachite green from aqueous solution using nano-iron oxide-loaded alginate microspheres: batch and column studies. Research on Chemical Intermediates, 2014, 40, 913-930.	2.7	33
43	Release dynamics of tetracycline from a loaded semi-interpenetrating polymeric material of polyvinyl alcohol and poly(acrylamide-co-styrene). Journal of Materials Science: Materials in Medicine, 2003, 14, 347-357.	3.6	32
44	Release Study of Sulphamethoxazole Controlled by Swelling of Gelatin Nanoparticles and Drugâ€Biopolymer Interaction. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 253-275.	2.2	32
45	Preparation and characterization of macroporous poly(2-hydroxyethyl methacrylate)-based biomaterials: Water sorption property andin vitro blood compatibility. Journal of Applied Polymer Science, 2007, 104, 1559-1571.	2.6	32
46	Radiation induced crosslinking effect on semi - interpenetrating polymer networks of poly(vinyl) Tj ETQq0 0 0 rgI	3T /Overloo 2.1	ck 10 Tf 50 3
47	Preparation and Characterization of Binary Grafted Polymeric Blends of Polyvinyl Alcohol and Gelatin and Evaluation of their Water Uptake Potential. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 663-682.	2.2	30
48	Dynamics of controlled release of heparin from swellable crosslinked starch microspheres. Journal of Materials Science: Materials in Medicine, 2007, 18, 1613-1621.	3.6	30
49	Calcium alginate nanocarriers as possible vehicles for oral delivery of insulin. Journal of Experimental Nanoscience, 2014, 9, 337-356.	2.4	30
50	ENHANCED WATER SORPTION OF A SEMI-INTERPENETRATING POLYMER NETWORK (IPN) OF POLY(2-HYDROXYETHYL METHACRYLATE) (PHEMA) AND POLY(ETHYLENE GLYCOL) (PEG). Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 667-692.	2.2	29
51	Study on the adsorption of hemoglobin onto bentonite clay surfaces. Journal of Applied Polymer Science, 2002, 85, 1607-1618.	2.6	29
52	Designing polysaccharide-based antibacterial biomaterials for wound healing applications. Biomatter, 2011, 1, 189-197.	2.6	29
53	DYNAMIC SWELLING BEHAVIOR OF POLYACRYLAMIDE BASED THREE COMPONENT HYDROGELS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 1069-1088.	2.2	28

⁵⁴ Preparation, characterization, and water-sorption study of polyvinyl alcohol based hydrogels with grafted hydrophilic and hydrophobic segments. Journal of Applied Polymer Science, 2005, 95, 1129-1142. 2.6 28

#	Article	IF	CITATIONS
55	Designing Gelatin Nanocarriers as a Swellable System for Controlled Release of Insulin: An <i>In-Vitro</i> Kinetic Study. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 47, 119-130.	2.2	28
56	Designing Swellable Beads of Alginate and Gelatin for Controlled Release of Pesticide (Cypermethrin). Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 847-859.	2.2	27
57	A new technique for the study of the kinetics of adsorption of polymers onto surfaces. Polymer International, 1993, 32, 43-51.	3.1	26
58	Blood protein adsorption onto a polymeric biomaterial of polyethylene glycol and poly[(2-hydroxyethyl methacrylate)-co-acrylonitrile] and evaluation ofin vitro blood compatibility. Polymer International, 2005, 54, 304-315.	3.1	26
59	Blood protein adsorption onto macroporous semi-interpenetrating polymer networks (IPNs) of poly(ethylene glycol) (PEG) and poly(2-hydroxyethyl methacrylate) (PHEMA) and assessment ofin vitro blood compatibility. Polymer International, 2007, 56, 231-244.	3.1	26
60	Study of biomineralization of poly(vinyl alcohol)-based scaffolds using an alternate soaking approach. Polymer International, 2007, 56, 557-568.	3.1	26
61	Designing Polyaniline (PANI) and Polyvinyl Alcohol (PVA) Based Electrically Conductive Nanocomposites: Preparation, Characterization and Blood Compatible Study. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 774-782.	2.2	26
62	Investigation of magnetically enhanced swelling behaviour of superparamagnetic starch nanoparticles. Bulletin of Materials Science, 2013, 36, 15-24.	1.7	26
63	Preparation and characterization of poly(vinyl alcohol) cryogel-silver nanocomposites and evaluation of blood compatibility, cytotoxicity, and antimicrobial behaviors. Polymer Composites, 2015, 36, 1983-1997.	4.6	26
64	Functionalization of ginger derived nanoparticles with chitosan to design drug delivery system for controlled release of 5-amino salicylic acid (5-ASA) in treatment of inflammatory bowel diseases: An in vitro study. Reactive and Functional Polymers, 2020, 149, 104520.	4.1	26
65	Removal of Chromium(VI) Ions by Adsorption onto Binary Biopolymeric Beads of Sodium Alginate and Carboxymethyl Cellulose. Journal of Dispersion Science and Technology, 2011, 32, 1075-1082.	2.4	25
66	Poly (acrylic acid) grafted gelatin nanocarriers as swelling controlled drug delivery system for optimized release of paclitaxel from modified gelatin. Journal of Drug Delivery Science and Technology, 2018, 45, 323-333.	3.0	25
67	Preparation, characterization and microhardness study of semi interpenetrating polymer networks of polyvinyl alcohol and crosslinked polyacrylamide. Journal of Materials Science: Materials in Medicine, 2006, 17, 1305-1313.	3.6	24
68	Designing polyethylene glycol (PEG) – plasticized membranes of poly(vinyl alcohol-g-methyl) Tj ETQqO O O rgBT Monomers and Polymers, 2013, 16, 436-446.	/Overlock 1.6	10 Tf 50 22 24
69	Designing of silk and ZnO based antibacterial and noncytotoxic bionanocomposite films and study of their mechanical and UV absorption behavior. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 281-294.	3.1	24
70	Easy fabrication and characterization of gelatin nanocarriers and in vitro investigation of swelling controlled release dynamics of paclitaxel. Polymer Bulletin, 2018, 75, 4691-4711.	3.3	24
71	Preparation and characterization of novel pH-sensitive binary grafted polymeric blends of gelatin and poly(vinyl alcohol): Water sorption and blood compatibility study. Journal of Applied Polymer Science, 2006, 100, 599-617.	2.6	23
72	Synthesis and characterization of polyvinyl alcohol based semi interpenetrating polymeric networks. Journal of Polymer Research, 2012, 19, 1.	2.4	23

ANIL K BAJPAI

18

#	Article	IF	CITATIONS
73	Graphene coated iron oxide (GCIO) nanoparticles as efficient adsorbent for removal of chromium ions: Preparation, characterization and batch adsorption studies. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 148-162.	2.9	23
74	Swelling controlled delivery of antibiotic from a hydrophilic macromolecular matrix with hydrophobic moieties. Macromolecular Research, 2003, 11, 273-282.	2.4	22
75	Carboxymethyl cellulose (CMC) based semi-IPNs as carriers for controlled release of ciprofloxacine: an in-vitro dynamic study. Journal of Materials Science: Materials in Medicine, 2008, 19, 2121-2130.	3.6	22
76	Cryogenic Designing of Biocompatible Blends of Polyvinyl alcohol and Starch with Macroporous Architecture. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 1060-1068.	2.2	22
77	Adsorption of casein onto alkali treated bentonite. Journal of Applied Polymer Science, 2000, 78, 1656-1663.	2.6	21
78	Preparation and characterization of polyvinyl alcohol based biomaterials: Water sorption andin vitro blood compatibility study. Journal of Applied Polymer Science, 2006, 100, 2402-2408.	2.6	21
79	Dynamics of controlled release of potassium nitrate from a highly swelling binary polymeric blend of alginate and carboxymethyl cellulose. Journal of Applied Polymer Science, 2007, 106, 961-972.	2.6	21
80	Fibrinogen adsorption onto macroporous polymeric surfaces: correlation with biocompatibility aspects. Journal of Materials Science: Materials in Medicine, 2008, 19, 343-357.	3.6	21
81	Designing slow water-releasing alginate nanoreserviors for sustained irrigation in scanty rainfall areas. Carbohydrate Polymers, 2014, 102, 513-520.	10.2	21
82	Reverse indentation size effects in gamma irradiated blood compatible blend films of chitosan-poly (vinyl alcohol) for possible medical applications. Materials Science and Engineering C, 2017, 71, 982-993.	7.3	21
83	CdSe nanorod-reinforced poly(thiophene) composites in designing energy storage devices: study of morphology and dielectric behavior. Polymer Bulletin, 2021, 78, 115-131.	3.3	21
84	Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer. Bulletin of Materials Science, 2005, 28, 529-534.	1.7	20
85	Adsorption Behavior of Sulfamethoxazole onto an Alumina-Solution Interface. Bulletin of the Chemical Society of Japan, 1996, 69, 521-527.	3.2	19
86	Studies on the correlation between structure and adsorption of sulfonamide compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 168, 193-205.	4.7	19
87	ADSORPTION DYNAMICS OF BOVINE SERUM ALBUMIN (BSA) ONTO BINARY INTERPENETRATING POLYMER NETWORKS (IPNS) OF POLY(2-HYDROXYETHYL METHACRYLATE) (PHEMA). Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1123-1139.	2.2	19
88	Preparation and characterization of highly swelling smart grafted polymer networks of poly(vinyl) Tj ETQq0 0 0 i	gBT /Over 2.6	lock 10 Tf 50
89	Antimicrobial poly(vinyl alcohol) cryogel–copper nanocomposites for possible applications in biomedical fields. Designed Monomers and Polymers, 2015, 18, 385-400	1.6	19

90 Static and Kinetic Studies on the Adsorption Behavior of Sulfadiazene. Adsorption, 2000, 6, 349-357. 3.0

#	Article	IF	CITATIONS
91	In vitro release dynamics of insulin from a loaded hydrophilic polymeric network. Journal of Materials Science: Materials in Medicine, 2004, 15, 43-54.	3.6	18
92	Evaluation of the water sorption and controlled-release potential of binary polymeric beads of starch and alginate loaded with potassium nitrate as an agrochemical. Journal of Applied Polymer Science, 2004, 94, 1815-1826.	2.6	18
93	Dynamics of Controlled Release of Potassium Nitrate from a Highly Swelling Binary Biopolymeric Blend of Alginate and Pectin. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 165-186.	2.2	18
94	Designing of macroporous biocompatible cryogels of PVA–haemoglobin and their water sorption study. Journal of Materials Science: Materials in Medicine, 2009, 20, 2063-2074.	3.6	18
95	Adsorption of Hg(II) Ions onto Binary Biopolymeric Beads of Carboxymethyl Cellulose and Alginate. Journal of Dispersion Science and Technology, 2010, 31, 844-851.	2.4	18
96	Investigation of magnetically controlled water intake behavior of Iron Oxide Impregnated Superparamagnetic Casein Nanoparticles (IOICNPs). Journal of Nanobiotechnology, 2014, 12, 38.	9.1	18
97	Facile preparation of ionotropically crosslinked chitosan-alginate nanosorbents by water-in-oil (W/O) microemulsion technique: Optimization and study of arsenic (V) removal. Journal of Water Process Engineering, 2019, 32, 100920.	5.6	18
98	Analysis of topographical parameters and interfacial interaction of zinc oxide reinforced poly (vinyl) Tj ETQq0 0 0 Structures Nano Objects, 2019, 18, 100308.	rgBT /Ove 3.5	erlock 10 Tf 5 18
99	Binary biopolymeric beads of alginate and gelatin as potential adsorbent for removal of toxic Ni2+ ions: A dynamic and equilibrium study. Journal of Applied Polymer Science, 2007, 103, 2581-2590.	2.6	17
100	Evaluation of starch based cryogels as potential biomaterials for controlled release of antibiotic drugs. Bulletin of Materials Science, 2011, 34, 1739-1748.	1.7	17
101	Designing vanadium pentoxide-carboxymethyl cellulose/polyvinyl alcohol-based bionanocomposite films and study of their structure, topography, mechanical, electrical and optical behavior. Polymer Bulletin, 2018, 75, 781-807.	3.3	17
102	Studies on the Adsorption of Sulfapyridine at the Solution–Alumina Interface. Journal of Colloid and Interface Science, 1997, 187, 96-104.	9.4	16
103	Immobilization of diastase onto acid-treated bentonite clay surfaces. Colloid and Polymer Science, 2002, 280, 892-899.	2.1	16
104	Effect of gamma irradiation on the interpenetrating networks of gelatin and polyacrylonitrile: Aspect of crosslinking using microhardness and crosslink density measurements. Journal of Applied Polymer Science, 2006, 101, 2581-2586.	2.6	16
105	Removal of Cobalt Ions from Aqueous Solution by Adsorption onto Cross-Linked Calcium Alginate Beads. Journal of Dispersion Science and Technology, 2009, 30, 56-60.	2.4	16
106	Fabrication of Interpenetrating Networks of Poly (vinyl alcohol-g-acrylamide) and Chitosan-g-polyacrylamide Chains and Evaluation of Water Sorption, Blood Compatibility and Cytotoxicity Behaviors. Polymer-Plastics Technology and Engineering, 2012, 51, 1443-1450.	1.9	16
107	Facile preparation of iron loaded calcium alginate nanocarriers and study of controlled release of iron. Journal of Environmental Chemical Engineering, 2017, 5, 5337-5346.	6.7	16
108	SWELLING DYNAMICS OF A TERNARY INTERPENETRATING POLYMER NETWORK (IPN) AND CONTROLLED RELEASE OF POTASSIUM NITRATE AS A MODEL AGROCHEMICAL. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 75-102.	2.2	15

3.3

1.2

12

11

#	Article	IF	CITATIONS
109	Evaluation of water sorption property and inÂvitro blood compatibility of poly(2-hydroxyethyl) Tj ETQq1 1 0.784 Science: Materials in Medicine, 2008, 19, 1921-1933.	314 rgBT / 3.6	Overlock 10 15
110	Investigation of UV absorption and antibacterial behavior of zinc oxide containing poly(vinyl) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 702
111	Kinetics of poly(acrylic acid) adsorption at the liquid–glass interface. Journal of Applied Polymer Science, 1994, 51, 651-659.	2.6	14
112	Modulation in Sorption Dynamics of a pH‣ensitive Interpenetrating Polymer Network (IPN). Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 211-230.	2.2	14
113	Synthesis and characterization of magnetite (Fe ₃ O ₄)—Polyvinyl alcoholâ€based nanocomposites and study of superparamagnetism. Polymer Composites, 2010, 31, 245-255.	4.6	14
114	Study of Mechanical, Optical, and Electrical Behaviors of Calcium Alginate/Poly(vinyl) Tj ETQq0 0 0 rgBT /Overloc	k 10 Tf 50 2.4	542 Td (alco
115	Synthesis of Poly (2-Hydroxyethyl Methacrylate) (PHEMA) Based Nanoparticles for Biomedical and Pharmaceutical Applications. , 2012, 906, 321-328.		13
116	The biocompatibility and water uptake behavior of superparamagnetic poly(2-Hydroxyethyl) Tj ETQqO 0 0 rgBT /C delivery system. Journal of Polymer Research, 2014, 21, 1.	Overlock 1 2.4	0 Tf 50 467 T 13
117	Synthesis, Characterization, and Adsorption Properties of a Graphene Composite Sand (GCS) and Its Application in Remediation of Hg(II) Ions. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	13
118	Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity. Polymer Engineering and Science, 2019, 59, 254-263.	3.1	13
119	Dynamic and Equilibrium Studies on Adsorption of Cu(II) Ions onto Biopolymeric Cross-Linked Pectin and Alginate Beads. Journal of Dispersion Science and Technology, 2009, 30, 1208-1215.	2.4	12
120	Î ³ -Radiation Assisted Fabrication of Hydroxyapatite-Polyacrylamide Nanocomposites with Possible Application in Bone Implantology. Journal of Composite Materials, 2010, 44, 757-778.	2.4	12
121	Optimizing the release process and modelling of in vitro release data of cis -dichlorodiamminoplatinum (II) encapsulated into poly(2-hydroxyethyl methacrylate) nanocarriers. Materials Science and Engineering C, 2016, 58, 852-862.	7.3	12

125	Biosorption of chromium(VI) ions from aqueous solutions by iron oxide-impregnated alginate nanocomposites: batch and column studies. Toxicological and Environmental Chemistry, 2011, 93, 1277-1297.	1.2	11
-----	--	-----	----

Synthesis and characterization of amoxicillin loaded poly (vinyl alcohol)-g-poly (acrylamide)

(PVA-g-PAM) hydrogels and study of swelling triggered release of antibiotic drug. Polymer Bulletin, 2019, 76, 3269-3295.

On the mechanical strength of biocompatible semi-IPNs of polyvinyl alcohol and polyacrylamide. Microsystem Technologies, 2007, 14, 193-198.

Removal of arsenic ions from aqueous solutions by adsorption onto biopolymeric crosslinked

calcium alginate beads. Toxicological and Environmental Chemistry, 2009, 91, 1055-1067.

Mechanical and UV absorption behavior of zinc oxide nanoparticles: reinforced poly(vinyl) Tj ETQq0 0 0 rgBT /Overlgck 10 Tf 50 62 Td (a

122

#	Article	IF	CITATIONS
127	Poly (vinyl alcohol) supported thermally reduced graphene oxide (TRGO) nanosheets exhibit enhanced electrical and mechanical behavior. Nano Structures Nano Objects, 2018, 14, 73-83.	3.5	11
128	Designing kaolin-reinforced bionanocomposites of poly(vinyl alcohol)/gelatin and study of their mechanical and water vapor transmission behavior. Polymer Bulletin, 2019, 76, 5791-5811.	3.3	11
129	Thermoresponsive cryogels of poly(2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide) (P(HEMA-co-NIPAM)): fabrication, characterization and water sorption study. Polymer Bulletin, 2020, 77, 4417-4443.	3.3	11
130	Encapsulation of cytarabine into casein coated iron oxide nanoparticles (CCIONPs) and study of in vitro drug release and anticancer activities. Journal of Drug Delivery Science and Technology, 2020, 55, 101396.	3.0	11
131	Kinetic behaviour of adsorption of gelatin at solid-liquid interface. Polymer International, 1994, 33, 315-319.	3.1	10
132	Dynamics of the adsorption of egg albumin at the silica-solution interface. Journal of Applied Polymer Science, 1996, 60, 2219-2225.	2.6	10
133	Development of poly(acrylamide)â€hydroxyapatite composites as bone substitutes: Study of mechanical and blood compatible behavior. Polymer Composites, 2009, 30, 1532-1543.	4.6	10
134	Assessment of Water Retention Performance of Pectin-Based Nanocarriers for Controlled Irrigation in Agriculture. Agricultural Research, 2017, 6, 139-149.	1.7	10
135	Study on facile designing, swelling properties and structural relationship of gelatin nanoparticles. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 206-214.	2.2	10
136	Controlled Release of a Digestive Enzyme from a Swellable Semi-interpenetrating Polymer Network (IPN). Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 265-292.	2.2	9
137	Nano-iron oxide-encapsulated chitosan microspheres as novel adsorbent for removal of Ni (II) ions from aqueous solution. Research on Chemical Intermediates, 2013, 39, 2989-3009.	2.7	9
138	Cumulative release of cefotaxim from interpenetrating networks of poly(vinyl alcohol-g-acrylamide) and chitosan-g-polyacrylamide chains. Polymer Bulletin, 2014, 71, 977-988.	3.3	9
139	Investigation of <i>In Vitro</i> Release of Cisplatin from Electrostatically Crosslinked Chitosan-Alginate Nanoparticles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1532-1540.	0.6	9
140	Magnetically responsive release of 5-FU from superparamagnetic egg albumin coated iron oxide core-shell nanoparticles. Journal of Drug Delivery Science and Technology, 2018, 47, 240-253.	3.0	9
141	Preparation and Characterization of Hard and Biocompatible Interpenetrating Polymer Networks (IPNs) of Gelatin and Polyacrylonitrile. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1271-1285.	2.2	8
142	Self assembled hydrophobic nanoclusters of poly(methyl methacrylate) embedded into polyvinyl alcohol based hydrophilic matrix: Preparation and water sorption study. Journal of Applied Polymer Science, 2009, 111, 1300-1310.	2.6	8
143	Preparation and characterizations of superparamagnetic iron oxideâ€embedded poly(2â€hydroxyethyl) Tj ETQq1	1 0.7843 2.6	14 ₈ rgBT /Ove
144	An In Vitro Experimental Approach to Study Magnetically Targeted Release of Methotrexate From Superparamagnetic Starch Nanocarriers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 941-950.	3.4	8

#	Article	IF	CITATIONS
145	Structural, morphological, thermal and mechanical characterization of cellulose acetate–poly (acrylonitrile) semi interpenetrating polymer network (IPN) membranes and study of their swelling behavior. Polymer Bulletin, 2016, 73, 2245-2264.	3.3	8
146	Preparation and Characterization of Hydroxyapatite Impregnated Semiâ€interpenetrating Polymer Networks (IPNs) of Polyvinyl Alcohol and Poly(Acrylamideâ€coâ€acrylic Acid). Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 1135-1159.	2.2	7
147	Studies on α-amylase induced degradation of binary polymeric blends of crosslinked starch and pectin. Journal of Materials Science: Materials in Medicine, 2007, 18, 765-777.	3.6	7
148	Dynamics of blood proteins adsorption onto poly (2â€hydroxyethyl methacrylate)â€silica nanocomposites: Correlation with biocompatibility. Journal of Applied Polymer Science, 2008, 107, 541-553.	2.6	7
149	Synthesis of Iron Oxide Based Gelatin Nanocomposites and their Applications in Removal of Cr (VI) Ions from Aqueous Solutions. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 47-56.	2.2	7
150	Adsorption of Chromium on Composite Microspheres of Chitosan and Nano Iron Oxide. Journal of Dispersion Science and Technology, 2011, 32, 1661-1667.	2.4	7
151	Plaster of Paris-Reinforced Nanocomposites of Poly (2-hydroxyethyl Methacrylate-Co-acrylamide) as Alternative Orthopedic Material. Polymer-Plastics Technology and Engineering, 2013, 52, 133-140.	1.9	7
152	Fundamentals of bionanocomposites. , 2018, , 351-377.		7
153	CdSe Reinforced Polyaniline Nanocomposites as Superior Material for Future Applications as Gas Sensor and Diodes. Materials Research Express, 2019, 6, 1250a9.	1.6	7
154	Influence of nature of surfactant and precursor salt anion on the microwave assisted synthesis of barium carbonate nanoparticles. Materials Chemistry and Physics, 2020, 241, 122377.	4.0	7
155	CdSe reinforced polythiophene nanocomposites as excellent materials for diode applications. EXPRESS Polymer Letters, 2021, 15, 45-57.	2.1	7
156	Improving mechanical and electrical properties of poly(vinyl alcohol-g-acrylic acid) nanocomposite films by reinforcement of thermally reduced graphene oxide. Polymer Science - Series A, 2017, 59, 751-763.	1.0	7
157	Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) enabled analysis of inter-polymer phases formation in poly (diaminonaphthalene) doped conducting poly (vinyl alcohol) films. Polymer, 2017, 110, 211-217.	3.8	6
158	Structural, morphological and thermal characterization of poly (2-hydroxyethyl) Tj ETQq0 0 0 rgBT /Overlock 10 T cytotoxicity. Journal of Polymer Research, 2017, 24, 1.	rf 50 227 ⁻ 2.4	Id (methacry 6
159	Inverse emulsion polymerizationâ€assisted designing of superparamagnetic poly (2â€hydroxyethyl) Tj ETQq1 1 C Science, 2021, 61, 1427-1439.).784314 r 3.1	gBT /Overloc 6
160	MODULATION OF IN VITRO RELEASE OF CRYSTAL VIOLET FROM A BINARY POLYMER HYDROGEL SYSTEM. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 489-508.	2.2	5
161	αâ€Amylase Induced Enhanced Enzymatic Degradation of Binary Polymeric Blends of Crosslinked Starch and Gelatin. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 949-969.	2.2	5
162	Evaluation of water sorption behavior and <i>in vitro</i> blood compatibility of polyvinyl alcohol based magnetic bionanocomposites. Journal of Applied Polymer Science, 2009, 114, 3548-3560.	2.6	5

#	Article	IF	CITATIONS
163	A Facile Approach to Design Plaster of Paris Based Polymer Nanocomposites for Possible Use as Bone Implants. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 849-860.	2.2	5
164	Investigation of electroactive behaviour of polyaniline containing polyelectrolyte nanocomposite membranes. Nanoscience Methods, 2012, 1, 164-182.	1.0	5
165	Topological and morphological analysis of gamma rays irradiated chitosan-poly (vinyl alcohol) blends using atomic force microscopy. Radiation Physics and Chemistry, 2017, 133, 81-85.	2.8	5
166	Structure and topography of thermally reduced graphene oxide reinforced poly(vinyl alcohol―g) Tj ETQq0 0 0 r 40, E409.	gBT /Overl 4.6	ock 10 Tf 50 5
167	Predictions of Drug–Protein Interactions and Study of Magnetically Assisted Release Dynamics of 5-Fluorouracil from Soya Protein-Coated Iron Oxide Core–Shell Nanoparticles. ACS Applied Bio Materials, 2020, 3, 3170-3186.	4.6	5
168	Role of diaminonaphthalene based polymers as sensors in detection of biomolecules: A review. Results in Materials, 2021, 9, 100174.	1.8	5
169	Adsorption behavior of poly(vinylpyrrolidone) toward fuller's earth suspensions. Journal of Applied Polymer Science, 2000, 78, 2122-2133.	2.6	4
170	Water Sorption and Biocompatibility Evaluation of Poly(Vinyl Alcohol – Acrylonitrile) Based Hydrogels. Soft Materials, 2013, 11, 221-230.	1.7	4
171	Analyzing p-type Conjugated Conducting Poly (diaminonaphthalene) Doped Poly (vinyl alcohol) Bulk Hetrojunction Film for Organic Solar Cells. Materials Today: Proceedings, 2018, 5, 1673-1678.	1.8	4
172	Solubility behavior of poly (diaminonaphthalene) doped poly (vinyl alcohol) films in different solvents and structural and electrical characterization of corresponding films. Materials Research Express, 2019, 6, 105330.	1.6	4
173	Advanced Controlled Nanopesticide Delivery Systems for Managing Insect Pests. , 2020, , 155-184.		4
174	Efficient graphene-coated iron oxide (GCIO) nanoadsorbent for removal of lead and arsenic ions. Environmental Technology (United Kingdom), 2021, 42, 2187-2201.	2.2	4
175	An adsorption study of gelatin onto the Fuller's earth surfaces. Journal of Applied Polymer Science, 2005, 98, 42-52.	2.6	3
176	Influence of gelatin on the properties of hydroxyapatite–polyacrylamide nanocomposite as a potential bone substitute. Composite Interfaces, 2008, 15, 709-729.	2.3	3
177	Binary biopolymeric beads of alginate and carboxymethyl cellulose as potential adsorbent for removal of cobalt (II) ions: A dynamic and equilibrium study. Toxicological and Environmental Chemistry, 2010, 92, 211-222.	1.2	3
178	Development of Savlon Containing Polyvinyl Alcohol Based Cryogels as Potential Biomaterials for Burn Healing Applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 380-387.	3.4	3
179	Advances in bionanocomposites for biomedical applications. , 2018, , 379-399.		3
180	CdSe QDs reinforced poly(1, 8 diaminonaphthalene) (PDAN) offers improved thermal and AC conductivity properties. SN Applied Sciences, 2019, 1, 1.	2.9	3

#	Article	IF	CITATIONS
181	Silver hydroxyapatite (AgHAP) reinforced nanocomposites of poly (methyl methacrylate)-poly (É>-caprolactone) as hybrid orthopedic materials. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 782-796.	3.4	3
182	Synthesis of Poly(2-Hydroxyethyl Methacrylate) (PHEMA)-Based Superparamagnetic Nanoparticles for Biomedical and Pharmaceutical Applications. Methods in Molecular Biology, 2020, 2118, 165-174.	0.9	3
183	In vitro release modulation of hemoglobin from a ternary polymeric delivery vehicle. Journal of Applied Polymer Science, 2002, 85, 104-113.	2.6	2
184	Designing Gelatin Based Blood Compatible Materials with Hydrophilic and Hydrophobic Macromolecular Chains. Journal of Dispersion Science and Technology, 2011, 32, 1032-1040.	2.4	2
185	Superparamagnetic Nanocomposites of Poly(vinyl alcoholâ€ <i>graft</i> â€acrylonitrile) as Carrier for Magnetically Assisted Release of Ciprofloxacin. Macromolecular Symposia, 2012, 315, 73-83.	0.7	2
186	Polyacrylonitrile reinforced PVA based-polymeric networks: Structural, morphological, and mechanical aspects. Polymer Engineering and Science, 2014, 54, 2579-2586.	3.1	2
187	Soya protein as possible potential nanocarriers for <i>in-vitro</i> oral delivery of insulin in simulated gastric fluids (SGFs). International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 340-350.	3.4	2
188	Cationic Nanosorbents Biopolymers: Versatile Materials for Environmental Cleanup. Springer Series on Polymer and Composite Materials, 2018, , 75-101.	0.7	2
189	Static and Dynamic Studies on Removal of Chlorophenol from Aqueous Solutions Using Chitosan-Carbon Nanocomposites. Analytical Chemistry Letters, 2019, 9, 32-49.	1.0	2
190	Structural, morphological and electrical studies of poly (1, 8-diaminonaphthalene)/CdSe(S) nanocomposites for charge storage applications. Materials Research Express, 2019, 6, 045033.	1.6	2
191	Investigation of Water Sorption and Blood Compatible Behaviors of Polyethylene Glycol (PEC)—Plasticized Membranes of Poly(Vinyl Alcohol-g-Acrylonitrile). Advanced Science, Engineering and Medicine, 2012, 4, 469-478.	0.3	2
192	Designing high performance biomaterials with architectural manipulation. Materials Technology, 2010, 25, 177-183.	3.0	1
193	Novel Synthesis of Polypyrrole Reinforced Nanocomposites and Evaluation of Water Uptake and Blood Compatible Behaviors. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 9-20.	2.2	1
194	Biosorption of As3+lons Using Ternary Microspheres of Chitosan, Yeast, and Gelatin: A Dynamic and Equilibrium Investigation. Journal of Dispersion Science and Technology, 2011, 32, 1556-1565.	2.4	1
195	Facile Synthesis of Silver Hydroxyapatite (AgHAP) Reinforced Nanocomposites of Poly (styrene)â€Poly (methyl methacrylate) and Study of Their Mechanical and Bloodâ€Compatible Behavior. ChemistrySelect, 2019, 4, 10983-10994.	1.5	1
196	<i>In vitro</i> investigation of swelling triggered release of 5-fluorouracil from gelatin coated gold nanoparticles. Inorganic and Nano-Metal Chemistry, 2022, 52, 63-74.	1.6	1
197	Investigation of Sustained Release of 5- Fluoro Uracil Drug from Chitosan-co-Lactic acid Nanoparticles. Analytical Chemistry Letters, 2021, 11, 271-283.	1.0	1
198	Synthesis, Characterization and Investigation of Water Uptake Capacity of Gelatin Coated Gold Nanoparticles. Analytical Chemistry Letters, 2021, 11, 729-740.	1.0	1

#	Article	IF	CITATIONS
199	Swelling triggered release of cisplatin from gelatin coated gold nanoparticles. Inorganic and Nano-Metal Chemistry, 2022, 52, 961-973.	1.6	1
200	Studies on Mechanical and Antithrombogenic Behaviors of Polyvinyl Alcohol and Gelatin Based Novel Binary Polymer Blends with Grafted Polyacrylamide Chains. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 697-707.	2.2	0
201	Alginate-Based Nanosorbents for Water Remediation. Springer Series on Polymer and Composite Materials, 2018, , 103-121.	0.7	0
202	Designing Cellulose Acetate - Polyacrylamide Semi-Interpenetrating Polymer Networks and Evaluation of their Protein Retention Behavior. Polymer-Plastics Technology and Materials, 2019, 58, 519-536.	1.3	0
203	Polymer Formulations for Pesticide Release. , 2020, , 185-206.		0
204	Evaluation of DC and AC conducting properties of poly (diaminonaphathalene) conjugated polymer doped in poly (vinyl alcohol) films. AlP Conference Proceedings, 2020, , .	0.4	0
205	Starch-based hydrogels. , 2021, , 75-112.		0
206	Facile Preparation of Antibacterial Gelatin-Kaolin Bionano- composite Membranes and Study of Water Sorption and Water Vapour Transmission Rate (WVTR). Analytical Chemistry Letters, 2021, 11, 816-827.	1.0	0