Marco Arteaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3250541/publications.pdf

Version: 2024-02-01

68	943	17 h-index	29
papers	citations		g-index
70	70	70	630 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Robot Control Without Velocity Measurements: New Theory and Experimental Results. IEEE Transactions on Automation Science and Engineering, 2004, 20, 297-308.	2.3	94
2	Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay. Robotics and Autonomous Systems, 2007, 55, 609-617.	5.1	76
3	On the Properties of a Dynamic Model of Flexible Robot Manipulators. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1998, 120, 8-14.	1.6	57
4	GPI based velocity/force observer design for robot manipulators. ISA Transactions, 2014, 53, 929-938.	5.7	48
5	Adaptive control of robot manipulators based on passivity. IEEE Transactions on Automatic Control, 1994, 39, 1871-1875.	5.7	47
6	Adaptive position/force control for robot manipulators in contact with a rigid surface with uncertain parameters. European Journal of Control, 2015, 22, 1-12.	2.6	46
7	Decentralized control of cooperative robots without velocity–force measurements. Automatica, 2006, 42, 329-336.	5.0	44
8	On the Control of Cooperative Robots Without Velocity Measurements. IEEE Transactions on Control Systems Technology, 2004, 12, 600-608.	5. 2	43
9	Dynamic model and simulation of cooperative robots: a case study. Robotica, 2005, 23, 615-624.	1.9	41
10	On tracking control of flexible robot arms. IEEE Transactions on Automatic Control, 2000, 45, 520-527.	5.7	39
11	Adaptive control of robots with an improved transient performance. IEEE Transactions on Automatic Control, 2002, 47, 1198-1202.	5.7	35
12	Robot control and parameter estimation with only joint position measurements. Automatica, 2003, 39, 67-73.	5.0	29
13	Cartesian control of robots without dynamic model and observer design. Automatica, 2006, 42, 473-480.	5.0	29
14	Control of bilateral teleoperators with time delays using only position measurements. International Journal of Robust and Nonlinear Control, 2018, 28, 808-824.	3.7	22
15	On the adaptive control of cooperative robots with timeâ€variant holonomic constraints. International Journal of Adaptive Control and Signal Processing, 2017, 31, 1217-1231.	4.1	19
16	Experimental Results on the Robust and Adaptive Control of Robot Manipulators Without Velocity Measurements. IEEE Transactions on Control Systems Technology, 2020, 28, 2770-2773.	5. 2	19
17	Robot force control without dynamic model: theory and experiments. Robotica, 2013, 31, 149-171.	1.9	17
18	On the GPI approach with unknown inertia matrix in robot manipulators. International Journal of Control, 2014, 87, 844-860.	1.9	15

#	Article	IF	CITATIONS
19	Tracking control of flexible robot arms with a nonlinear observer. Automatica, 2000, 36, 1329-1337.	5.0	14
20	On the adaptive control of robot manipulators with velocity observers. International Journal of Robust and Nonlinear Control, 2020, 30, 4371-4396.	3.7	14
21	Remote Visual Servoing of a Robot Manipulator via Internet2. Journal of Intelligent and Robotic Systems: Theory and Applications, 2007, 49, 171-187.	3.4	13
22	A Force/Motion Control Approach Based on Trajectory Planning for Industrial Robots With Closed Control Architecture. IEEE Access, 2021, 9, 80728-80740.	4.2	12
23	Finite-time control for rigid robots with bounded input torques. Control Engineering Practice, 2020, 102, 104556.	5.5	11
24	Simplied Methodology for Obtaining the Dynamic Model of Robot Manipulators. International Journal of Advanced Robotic Systems, 2012, 9, 170.	2.1	10
25	Observer design for the synchronization of bilateral delayed teleoperators. European Journal of Control, 2018, 43, 20-32.	2.6	9
26	Transparent bilateral teleoperation interacting with unknown remote surfaces with a force/velocity observer design. International Journal of Control, 2019, 92, 840-857.	1.9	9
27	Observer-based Higher-Order Sliding Mode Impedance Control of Bilateral Teleoperation under Constant Unknown Time Delay. , 2006, , .		8
28	Force and velocity observers for the control of cooperative robots. Robotica, 2008, 26, 85-92.	1.9	7
29	3D Visual Servoing Control for Robot Manipulators Without Parametric Identification. IEEE Latin America Transactions, 2015, 13, 569-577.	1.6	7
30	Dexterous robotic manipulation via a dynamic sliding mode force/position control with bounded inputs. IET Control Theory and Applications, 2019, 13, 832-840.	2.1	7
31	Output Feedback Hybrid Force/Motion Control for Robotic Manipulators Interacting with Unknown Rigid Surfaces. Robotica, 2020, 38, 136-158.	1.9	7
32	Model free control for differential pneumatic pistons: experimental comparison. International Journal of Control, 2011, 84, 138-164.	1.9	6
33	Speed-sensorless control of SR motors based on GPI observers. Control Engineering Practice, 2016, 46, 115-128.	5.5	6
34	Experimental Results for Haptic Interaction With Virtual Holonomic and Nonholonomic Constraints. IEEE Access, 2020, 8, 120959-120973.	4.2	6
35	Telemanipulation of cooperative robots: a case of study. International Journal of Control, 2018, 91, 1284-1299.	1.9	5
36	Velocity observer design for the consensus in delayed robot networks. Journal of the Franklin Institute, 2018, 355, 6810-6829.	3.4	5

#	Article	IF	CITATIONS
37	An alternative proof to the asymptotic stability of PID controllers for regulation of robot manipulators. IFAC Journal of Systems and Control, 2019, 9, 100066.	1.7	5
38	On the delayed kinematic correspondence with variable time delays for the control of the bilateral teleoperation of robots. International Journal of Control, 2021, 94, 2353-2368.	1.9	5
39	TRANSPARENT BILATERAL MASTER–SLAVE CONTROL BASED ON VIRTUAL SURFACES: STABILITY ANALYSIS AND EXPERIMENTAL RESULTS. International Journal of Robotics and Automation, 2015, 30, .	0.1	5
40	Flexible-link Manipulators: Modeling, Nonlinear Control and Observer. , 2003, , 1-69.		4
41	On output regulation of direct visual servoing via velocity fields. International Journal of Control, 2009, 82, 679-688.	1.9	4
42	A simple approach for 2D visual servoing. , 2009, , .		4
43	Master/Slave Robotic System for Teaching Motion-Force Manufacturing Tasks. Applied Mechanics and Materials, 2013, 307, 84-88.	0.2	4
44	On the Observability and the Observer Design of Differential Pneumatic Pistons. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2015, 137, .	1.6	4
45	Adaptive position/force control for robot manipulators in contact with a rigid surface with unknown parameters. , 2015, , .		4
46	Improving force tracking control performance in cooperative robots. International Journal of Advanced Robotic Systems, 2017, 14, 172988141770896.	2.1	4
47	Experimental Modeling of a Two-Link Flexible Manipulator. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 509-514.	0.4	3
48	Force control without inverse kinematics nor robot model. , 2007, , .		3
49	Velocity and Force Observers for the Control of Robot Manipulators. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2013, 135, .	1.6	3
50	Fuzzy vs Nonfuzzy in 2D Visual Servoing for Robot Manipulators. International Journal of Advanced Robotic Systems, 2013, 10, 108.	2.1	3
51	Dexterous Remote Manipulation by Means of a Teleoperation System. Robotica, 2019, 37, 1457-1476.	1.9	3
52	Observer design for bilateral teleoperation systems with variable time delays * *This work has been supported by the DGAPAâ€"UNAM under grant IN114617 IFAC-PapersOnLine, 2017, 50, 14368-14373.	0.9	2
53	A simple approach for the force control of bilateral teleoperated manipulators with variable time delays. Control Engineering Practice, 2020, 102, 104564.	5.5	2
54	Velocity/force observer design for robot manipulators. , 2013, , .		1

#	Article	IF	CITATIONS
55	A simple application of GPI observers to the force control of robots. , 2014, , .		1
56	Observer based bilateral teleoperation for delayed systems: New proposal and experimental results. , $2016, , .$		1
57	Tracking control of flexible robot arms. , 1997, , .		1
58	Velocity Observer Design. Lecture Notes in Electrical Engineering, 2022, , 143-164.	0.4	1
59	Discussion on: "Robustness of PID-Controlled Manipulators vis-Ã-vis Actuator Dynamics and External Disturbances― European Journal of Control, 2007, 13, 579-582.	2.6	O
60	Discussion on: "Adaptive Field-oriented Control of Synchronous Motors with Damping Windings― European Journal of Control, 2008, 14, 196-198.	2.6	0
61	Discussion on: Robustness of PID-controlled Manipulatorsvis-Ã-visActuator Dynamics and External Disturbances. European Journal of Control, 2007, 13, 577-582.	2.6	O
62	Force Control. Lecture Notes in Electrical Engineering, 2022, , 215-255.	0.4	0
63	Bilateral Teleoperation. Lecture Notes in Electrical Engineering, 2022, , 257-281.	0.4	O
64	Robot Networks. Lecture Notes in Electrical Engineering, 2022, , 283-310.	0.4	0
65	Dynamics of Rigid Robot Manipulators. Lecture Notes in Electrical Engineering, 2022, , 71-102.	0.4	O
66	Common Control Approaches for Robot Manipulators. Lecture Notes in Electrical Engineering, 2022, , 129-139.	0.4	0
67	Adaptive and Robust Control. Lecture Notes in Electrical Engineering, 2022, , 165-213.	0.4	0
68	Cooperative Robots. Advances in Civil and Industrial Engineering Book Series, 0, , 30-91.	0.2	0