
George G Holz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3248368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon. Journal of Biological Chemistry, 2022, 298, 101484.	3.4	18
2	Nonpeptidic Z360-Analogs Tagged with Trivalent Radiometals as Anti-CCK2R Cancer Theranostic Agents: A Preclinical Study. Pharmaceutics, 2022, 14, 666.	4.5	3
3	The alphaâ€7 nicotinic acetylcholine receptor agonist <scp>GTS</scp> â€21 engages the glucagonâ€like peptideâ€1 incretin hormone axis to lower levels of blood glucose in db/db mice. Diabetes, Obesity and Metabolism, 2022, 24, 1255-1266.	4.4	8
4	Design and Evaluation of Peptide Dual-Agonists of GLP-1 and NPY2 Receptors for Glucoregulation and Weight Loss with Mitigated Nausea and Emesis. Journal of Medicinal Chemistry, 2021, 64, 1127-1138.	6.4	21
5	Synthesis, Optimization, and Biological Evaluation of Corrinated Conjugates of the GLP-1R Agonist Exendin-4. Journal of Medicinal Chemistry, 2021, 64, 3479-3492.	6.4	2
6	Cyclic AMPâ€dependent Activation of ERK Via GLPâ€1 Receptor Signaling Requires the Neuroendocrine Cellâ€Selective Guanine Nucleotide Exchanger NCSâ€RapGEF2. FASEB Journal, 2021, 35, .	0.5	0
7	Cyclic AMPâ€dependent activation of ERK via GLPâ€1 receptor signalling requires the neuroendocrine cellâ€specific guanine nucleotide exchanger NCSâ€RapCEF2. Journal of Neuroendocrinology, 2021, 33, e12974.	2.6	3
8	Synthesis, in vitro biological investigation, and molecular dynamics simulations of thiazolopyrimidine based compounds as corticotrophin releasing factor receptor-1 antagonists. Bioorganic Chemistry, 2021, 114, 105079.	4.1	2
9	Discovery of a stable tripeptide targeting the N-domain of CRF1 receptor. Amino Acids, 2020, 52, 1337-1351.	2.7	0
10	Corrination of a GLP-1 Receptor Agonist for Glycemic Control without Emesis. Cell Reports, 2020, 31, 107768.	6.4	18
11	Therapeutic potential of α7 nicotinic acetylcholine receptor agonists to combat obesity, diabetes, and inflammation. Reviews in Endocrine and Metabolic Disorders, 2020, 21, 431-447.	5.7	24
12	[^{99m} Tc]Tc-DGA1, a Promising CCK ₂ R-Antagonist-Based Tracer for Tumor Diagnosis with Single-Photon Emission Computed Tomography. Molecular Pharmaceutics, 2020, 17, 3116-3128.	4.6	10
13	FRET Reporter Assays for cAMP and Calcium in a 96-well Format Using Genetically Encoded Biosensors Expressed in Living Cells. Bio-protocol, 2020, 10, .	0.4	7
14	"A-kinase―regulator runs amok to provide a paradigm shift in cAMP signaling. Journal of Biological Chemistry, 2019, 294, 2247-2248.	3.4	4
15	Nonconventional glucagon and GLP-1 receptor agonist and antagonist interplay at the GLP-1 receptor revealed in high-throughput FRET assays for cAMP. Journal of Biological Chemistry, 2019, 294, 3514-3531.	3.4	24
16	Chimeric peptide EP45 as a dual agonist at GLP-1 and NPY2R receptors. Scientific Reports, 2018, 8, 3749.	3.3	35
17	A vitamin B12 conjugate of exendinâ€4 improves glucose tolerance without associated nausea or hypophagia in rodents. Diabetes, Obesity and Metabolism, 2018, 20, 1223-1234.	4.4	25
18	Restoration of Glucose-Stimulated Cdc42-Pak1 Activation and Insulin Secretion by a Selective Epac Activator in Type 2 Diabetic Human Islets. Diabetes, 2018, 67, 1999-2011.	0.6	18

George G Holz

#	Article	IF	CITATIONS
19	α7 Nicotinic Acetylcholine Receptor Regulates the Function and Viability of L Cells. Endocrinology, 2018, 159, 3132-3142.	2.8	11
20	Cover Image, Volume 20, Issue 5. Diabetes, Obesity and Metabolism, 2018, 20, i.	4.4	0
21	GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion. Molecular Endocrinology, 2016, 30, 614-629.	3.7	20
22	Modeling analysis of inositol 1,4,5-trisphosphate receptor-mediated Ca ²⁺ mobilization under the control of glucagon-like peptide-1 in mouse pancreatic β-cells. American Journal of Physiology - Cell Physiology, 2016, 310, C337-C347.	4.6	9
23	Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy. Scientific Reports, 2016, 6, 28934.	3.3	18
24	Solution Structure and Constrained Molecular Dynamics Study of Vitamin B ₁₂ Conjugates of the Anorectic Peptide PYY(3–36). ChemMedChem, 2016, 11, 1015-1021.	3.2	6
25	PI3 kinases p110α and PI3K-C2β negatively regulate cAMP via PDE3/8 to control insulin secretion in mouse and human islets. Molecular Metabolism, 2016, 5, 459-471.	6.5	13
26	Vitamin B12 Conjugation of Peptide-YY3–36 Decreases Food Intake Compared to Native Peptide-YY3–36 Upon Subcutaneous Administration in Male Rats. Endocrinology, 2015, 156, 1739-1749.	2.8	22
27	Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion. Molecular Endocrinology, 2015, 29, 988-1005.	3.7	32
28	Enhanced Peptide Stability Against Protease Digestion Induced by Intrinsic Factor Binding of a Vitamin B ₁₂ Conjugate of Exendin-4. Molecular Pharmaceutics, 2015, 12, 3502-3506.	4.6	13
29	Molecular Basis of cAMP Signaling in Pancreatic Î ² Cells. , 2015, , 565-603.		2
30	Regulation of Glucose Homeostasis by GLP-1. Progress in Molecular Biology and Translational Science, 2014, 121, 23-65.	1.7	184
31	CO2/HCO3â^- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor Journal of Biological Chemistry, 2014, 289, 12679.	3.4	0
32	New insights concerning the molecular basis for defective glucoregulation in soluble adenylyl cyclase knockout mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2593-2600.	3.8	15
33	Molecular Basis of cAMP Signaling in Pancreatic Beta Cells. , 2014, , 1-36.		0
34	Molecular Basis of cAMP Signaling in Pancreatic Beta Cells. , 2014, , 1-35.		0
35	CO2/HCO3â^- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor. Journal of Biological Chemistry, 2013, 288, 33283-33291.	3.4	108
36	Synthesis, Characterization and Pharmacodynamics of Vitaminâ€B ₁₂ â€Conjugated Glucagonâ€Like Peptideâ€1. ChemMedChem, 2013, 8, 582-586.	3.2	28

#	Article	IF	CITATIONS
37	Identification and Characterization of Small Molecules as Potent and Specific EPAC2 Antagonists. Journal of Medicinal Chemistry, 2013, 56, 952-962.	6.4	59
38	Stimulation of Proglucagon Gene Expression by Human GPR119 in Enteroendocrine L-cell Line GLUTag. Molecular Endocrinology, 2013, 27, 1267-1282.	3.7	29
39	Epac2A Makes a New Impact in β-Cell Biology. Diabetes, 2013, 62, 2665-2666.	0.6	11
40	Leptin-stimulated KATPchannel trafficking. Islets, 2013, 5, 229-232.	1.8	12
41	Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18613-18618.	7.1	122
42	Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cellular Signalling, 2012, 24, 1333-1343.	3.6	130
43	cAMP Sensor Epac and Gastrointestinal Function. , 2012, , 1849-1861.		1
44	Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. Progress in Biophysics and Molecular Biology, 2011, 107, 236-247.	2.9	95
45	Phospholipase C-ε links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets, 2011, 3, 121-128.	1.8	68
46	Epac2-dependent mobilization of intracellular Ca ²⁺ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in β-cells of phospholipase C-ɛ knockout mice. Journal of Physiology, 2010, 588, 4871-4889.	2.9	61
47	PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2′- <i>O</i> -Me-cAMP-AM in human islets of Langerhans. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E622-E633.	3.5	67
48	Facilitation of β-cell K _{ATP} channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac. Islets, 2010, 2, 72-81.	1.8	43
49	Epac2-Dependent Rap1 Activation and the Control of Islet Insulin Secretion by Glucagon-Like Peptide-1. Vitamins and Hormones, 2010, 84, 279-302.	1.7	61
50	A Permissive Role for Protein Kinase a in Support of Epac Agonist-Stimulated Human Islet Insulin Secretion. Biophysical Journal, 2010, 98, 680a.	0.5	0
51	Enhanced Rap1 Activation and Insulin Secretagogue Properties of an Acetoxymethyl Ester of an Epac-selective Cyclic AMP Analog in Rat INS-1 Cells. Journal of Biological Chemistry, 2009, 284, 10728-10736.	3.4	56
52	Glucose-dependent potentiation of mouse islet insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM. Islets, 2009, 1, 260-265.	1.8	33
53	Glucagon-Like Peptide-1 Induced Signaling and Insulin Secretion Do Not Drive Fuel and Energy Metabolism in Primary Rodent Pancreatic I ² -Cells. PLoS ONE, 2009, 4, e6221.	2.5	54
54	Role of the cAMP sensor Epac as a determinant of K _{ATP} channel ATP sensitivity in human pancreatic βâ€cells and rat INSâ€1 cells. Journal of Physiology, 2008, 586, 1307-1319.	2.9	86

#	Article	IF	CITATIONS
55	Epac-selective cAMP analogs: New tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cellular Signalling, 2008, 20, 10-20.	3.6	149
56	Cytosolic adenylate kinases regulate K-ATP channel activity in human β-cells. Biochemical and Biophysical Research Communications, 2008, 368, 614-619.	2.1	43
57	<i>>Synchronizing Ca</i> ^{<i>2</i>+} <i>and cAMP oscillations in pancreatic β-cells: a role for glucose metabolism and GLP-1 receptors?</i> Focus on "Regulation of cAMP dynamics by Ca ²⁺ and G protein-coupled receptors in the pancreatic β-cell: a computational approachâ€ American lournal of Physiology - Cell Physiology, 2008, 294, C4-C6.	4.6	40
58	A Novel Cyclic Adenosine Monophosphate–Responsive Luciferase Reporter Incorporating a Nonpalindromic Cyclic Adenosine Monophosphate Response Element Provides Optimal Performance for Use in G Protein–Coupled Receptor Drug Discovery Efforts. Journal of Biomolecular Screening, 2007, 12, 740-746.	2.6	60
59	cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic β cells and rat INS-1 cells. Journal of Physiology, 2006, 573, 595-609.	2.9	120
60	Cell physiology of cAMP sensor Epac. Journal of Physiology, 2006, 577, 5-15.	2.9	234
61	Simultaneous Optical Measurements of Cytosolic Ca2+ and cAMP in Single Cells. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pl6-pl6.	3.9	34
62	A cAMP and Ca2+coincidence detector in support of Ca2+-induced Ca2+release in mouse pancreatic β cells. Journal of Physiology, 2005, 566, 173-188.	2.9	119
63	Interplay of Ca2+ and cAMP Signaling in the Insulin-secreting MIN6 β-Cell Line. Journal of Biological Chemistry, 2005, 280, 31294-31302.	3.4	183
64	Diabetes Outfoxed by GLP-1?. Science Signaling, 2005, 2005, pe2-pe2.	3.6	31
65	Epac: A New cAMP-Binding Protein in Support of Glucagon-Like Peptide-1 Receptor-Mediated Signal Transduction in the Pancreatic Â-Cell. Diabetes, 2004, 53, 5-13.	0.6	324
66	Amplification of exocytosis by Ca 2+ â€induced Ca 2+ release in INSâ€1 pancreatic β cells. Journal of Physiology, 2003, 546, 175-189.	2.9	70
67	Epac-selective cAMP Analog 8-pCPT-2′-O-Me-cAMP as a Stimulus for Ca2+-induced Ca2+ Release and Exocytosis in Pancreatic β-Cells. Journal of Biological Chemistry, 2003, 278, 8279-8285.	3.4	272
68	Glucagon-Like Peptide-1 Synthetic Analogs: New Therapeutic Agents for Use in the Treatment of Diabetes Mellitus. Current Medicinal Chemistry, 2003, 10, 2471-2483.	2.4	125
69	Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochemical Journal, 2003, 369, 287-299.	3.7	179
70	In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. Journal of Clinical Investigation, 2003, 111, 843-850.	8.2	579
71	Exendin-4 as a Stimulator of Rat Insulin I Gene Promoter Activity via bZIP/CRE Interactions Sensitive to Serine/Threonine Protein Kinase Inhibitor Ro 31-8220. Endocrinology, 2002, 143, 2303-2313.	2.8	47
72	Syntaxin-3 and syntaxin-1A inhibit L-type calcium channel activity, insulin biosynthesis and exocytosis in beta-cell lines. Diabetologia, 2002, 45, 231-241.	6.3	55

#	Article	lF	CITATIONS
73	Over-expression of the glucagon-like peptide-1 receptor on INS-1 cells confers autocrine stimulation of insulin gene promoter activity: a strategy for production of pancreatic β-cell lines for use in transplantation. Cell and Tissue Research, 2002, 307, 191-201.	2.9	19
74	Exendin-4 as a Stimulator of Rat Insulin I Gene Promoter Activity via bZIP/CRE Interactions Sensitive to Serine/Threonine Protein Kinase Inhibitor Ro 31-8220. Endocrinology, 2002, 143, 2303-2313.	2.8	19
75	cAMPâ€regulated guanine nucleotide exchange factor II (Epac2) mediates Ca 2+ â€induced Ca 2+ release in INSâ€1 pancreatic l²â€cells. Journal of Physiology, 2001, 536, 375-385.	2.9	182
76	Glucagon-Like Peptide-1: An Insulinotropic Hormone With Potent Growth Factor Actions at the Pancreatic Islets of Langerhans. Growth Hormone, 2001, , 109-141.	0.2	1
77	Glucagon-like peptide 1 stimulates insulin gene promoter activity by protein kinase A-independent activation of the rat insulin I gene cAMP response element Diabetes, 2000, 49, 1156-1164.	0.6	111
78	Expression of cAMP-Regulated Guanine Nucleotide Exchange Factors in Pancreatic Î ² -Cells. Biochemical and Biophysical Research Communications, 2000, 278, 44-47.	2.1	57
79	Insulinotropic toxins as molecular probes for analysis of glucagon-likepeptide-1 receptor-mediated signal transduction in pancreatic Î ² -cells. Biochimie, 2000, 82, 915-926.	2.6	17
80	Leptin Suppression of Insulin Secretion and Gene Expression in Human Pancreatic Islets: Implications for the Development of Adipogenic Diabetes Mellitus1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 670-676.	3.6	227
81	cAMP-dependent Mobilization of Intracellular Ca2+ Stores by Activation of Ryanodine Receptors in Pancreatic β-Cells. Journal of Biological Chemistry, 1999, 274, 14147-14156.	3.4	197
82	Leptin Suppression of Insulin Secretion and Gene Expression in Human Pancreatic Islets: Implications for the Development of Adipogenic Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 670-676.	3.6	190
83	Pertussis Toxin-Sensitive GTP-Binding Proteins Characterized in Synaptosomal Fractions of Embryonic Avian Cerebral Cortex. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 201-211.	1.6	4
84	Black widow spider α-latrotoxin: a presynaptic neurotoxin that shares structural homology with the glucagon-like peptide-1 family of insulin secretagogic hormones. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 121, 177-184.	1.6	42
85	Glucagon-Like Peptide-1 and the Glucose Competence Concept of Pancreatic Beta-Cell Function. Frontiers in Diabetes, 1997, 13, 171-193.	0.4	0
86	Signal Transduction of PACAP and GLP-1 in Pancreatic Î ² Cellsa. Annals of the New York Academy of Sciences, 1996, 805, 81-92.	3.8	37
87	Activation of a cAMP-regulated Ca2+-Signaling Pathway in Pancreatic β-Cells by the Insulinotropic Hormone Glucagon-like Peptide-1. Journal of Biological Chemistry, 1995, 270, 17749-17757.	3.4	157
88	Application of Patch Clamp Methods to the Study of Calcium Currents and Calcium Channels. Methods in Cell Biology, 1994, 40, 135-151.	1.1	13
89	Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature, 1993, 361, 362-365.	27.8	561
90	Signal transduction crosstalk in the endocrine system: pancreatic β-cells and the glucose competence concept. Trends in Biochemical Sciences, 1992, 17, 388-393.	7.5	130

#	Article	IF	CITATIONS
91	Receptor-Mediated Alterations of Calcium Channel Function in the Regulation of Neurosecretion. , 1990, , 107-114.		1
92	G proteins couple alpha-adrenergic and GABAb receptors to inhibition of peptide secretion from peripheral sensory neurons. Journal of Neuroscience, 1989, 9, 657-666.	3.6	97
93	The activity of ketoconazole and other azoles against Trypanosoma cruzi: biochemistry and chemotherapeutic action in vitro. Molecular and Biochemical Parasitology, 1989, 32, 179-189.	1.1	70
94	Effects of thiastearic acids on growth and on dihydrosterculic acid and other phospholipid fatty acyl groups of Leishmania promastigotes. Molecular and Biochemical Parasitology, 1989, 35, 57-66.	1.1	12
95	Sufentanil, Morphine, Met-enkephalin, and k-Agonist (U-50,488H) Inhibit Substance P Release from Primary Sensory Neurons. Anesthesiology, 1989, 70, 672-677.	2.5	66
96	Effects of a Squalene-2,3-Epoxidase Inhibitor on Propagation and Sterol Biosynthesis of Leishmania Promastigotes and Amastigotes. , 1989, , 885-890.		3
97	Effects of Lanosterol-14α-Demethylation Inhibitors on Propagation and Sterol Biosynthesis of Leishmania Promastigotes and Amastigotes. , 1989, , 765-771.		2
98	Effects of antimycotic azoles on growth and sterol biosynthesis of Leishmania promastigotes. Molecular and Biochemical Parasitology, 1988, 31, 149-162.	1.1	109
99	Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity. Journal of Neuroscience, 1988, 8, 463-471.	3.6	188
100	Functional Implications of Calcium Channel Modulation in Embryonic Dorsal Root Ganglion Neurons. , 1988, , 255-262.		1
101	G proteins as regulators of ion channel function. Trends in Neurosciences, 1987, 10, 241-244.	8.6	173
102	Dihydropyridine inhibition of neuronal calcium current and substance P release. Pflugers Archiv European Journal of Physiology, 1987, 409, 361-366.	2.8	189
103	Tegument galactosylceramides of the cestode Spirometra mansonoides. Molecular and Biochemical Parasitology, 1987, 26, 99-111.	1.1	25
104	Effects of ketoconazole on sterol biosynthesis by Trypanosomacruzi epimastigotes. Biochemical and Biophysical Research Communications, 1986, 136, 851-856.	2.1	64
105	Serotonin decreases the duration of action potentials recorded from tetraethylammonium-treated bullfrog dorsal root ganglion cells. Journal of Neuroscience, 1986, 6, 620-626.	3.6	38
106	GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature, 1986, 319, 670-672.	27.8	671
107	Effects of ketoconazole on sterol biosynthesis by Leishmania mexicana mexicana amastigotes in murine macrophage tumor cells. Molecular and Biochemical Parasitology, 1986, 20, 85-92.	1.1	86
108	Sterols of ketoconazole-inhibited Leishmania mexicana mexicana promastigotes. Molecular and Biochemical Parasitology, 1985, 15, 257-279.	1.1	77

#	Article	IF	CITATIONS
109	Serotonin depolarizes type A and C primary afferents: an intracellular study in bullfrog dorsal root ganglion. Brain Research, 1985, 327, 71-79.	2.2	39
110	Effect of the allyiamine antifungal drug SF 86–327 on the growth and sterol synthesis of Leishmania mexicana promastigotes. Biochemical Pharmacology, 1985, 34, 3785-3788.	4.4	31
111	Sterols of Leishmania species, implications for biosynthesis. Molecular and Biochemical Parasitology, 1984, 10, 161-170.	1.1	119
112	Identification of (24S)-24-methylcholesta-5,22-dien-3β-ol as the major sterol of a marine cryptophyte and a marine prymnesiophyte. Phytochemistry, 1983, 22, 475-476.	2.9	52
113	Some Phytomonas and Herpetomonas species form unique iso-branched polyunsaturated fatty acids. Molecular and Biochemical Parasitology, 1982, 5, 1-18.	1.1	14
114	The cyclopropane fatty acid of trypanosomatids. Molecular and Biochemical Parasitology, 1981, 3, 103-115.	1.1	33
115	Lipids of stages in the life-cycle of the cestode Spirometra mansonoides. Molecular and Biochemical Parasitology, 1980, 1, 249-268.	1.1	11
116	Benzoquinones in stages of the life-cycle of the cestode Spirometra mansonoides. Molecular and Biochemical Parasitology, 1980, 1, 269-278.	1.1	9
117	Dehydrodinosterol, dinosterone and related sterols of a non-photosynthetic dinoflagellate, Crypthecodinium cohnii. Phytochemistry, 1978, 17, 1987-1989.	2.9	80
118	Observations on the Ultrastructure ofUronemaspp., Marine Scuticociliates*. Journal of Protozoology, 1976, 23, 503-517.	0.8	25
119	Biosynthesis of oleic acid and docosahexaenoic acid by a heterotrophic marine dinoflagellate Crypthecodinium cohnii. Lipids and Lipid Metabolism, 1974, 369, 16-24.	2.6	23
120	The Lipids of Cestodes from Pacific and Atlantic Coast Triakid Sharks. Journal of Parasitology, 1971, 57, 1272.	0.7	14
121	The Polyunsaturated Fatty Acids of Marine Dinoflagellates. Journal of Protozoology, 1970, 17, 213-219.	0.8	124
122	The Polyunsaturated Fatty Acids of Marine and Freshwater Cryptomonads1. Journal of Protozoology, 1970, 17, 501-510.	0.8	42
123	Effect of dietary cholesterol on unsaturated fatty acid biosynthesis in a ciliated protozoan. Lipids and Lipid Metabolism, 1966, 125, 614-616.	2.6	14
124	Biosynthesis of Lipids by Kinetoplastid Flagellates. Journal of Biological Chemistry, 1966, 241, 5000-5007.	3.4	79
125	Production of a Vitamin B12Compound by Tetrahymenids*. Journal of Protozoology, 1962, 9, 211-214.	0.8	7
126	The Sterol Requirement ofTetrahymena paravoraxRP*. Journal of Protozoology, 1961, 8, 297-300.	0.8	26

#	Article	IF	CITATIONS
127	Some Physiological Characteristics of the Mating Types and Varieties ofTetrahymena pyriformis*â€. Journal of Protozoology, 1959, 6, 149-156.	0.8	29
128	Tetrahymena setiferan.sp., a Member of the GenusTetrahymenawith a Caudal Cilium*. Journal of Protozoology, 1956, 3, 112-118.	0.8	26
129	The Oxidative Metabolism of a Cryptomonad Flagellate, Chilomonas paramecium*. Journal of Protozoology, 1954, 1, 114-120.	0.8	29