
Long Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3248263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional silk fibroin/PVA bio-nanocomposite films containing TEMPO-oxidized bacterial cellulose nanofibers and silver nanoparticles. Cellulose, 2022, 29, 1647-1666.	4.9	20
2	The coupling effect of cellulose nanocrystal and strong shear field achieved the strength and toughness balance of Polylactide. International Journal of Biological Macromolecules, 2022, 207, 927-940.	7.5	12
3	Electrospun, sepiolite-loaded poly(vinyl alcohol)/soy protein isolate nanofibers: Preparation, characterization, and their drug release behavior. International Journal of Pharmaceutics, 2021, 594, 120172.	5.2	30
4	Incorporation of dynamic boronate links and Ag nanoparticles into PVA hydrogels for pH-Regulated and prolonged release of methotrexate. Journal of Drug Delivery Science and Technology, 2021, 63, 102502.	3.0	3
5	Polymeric Composite Matrix with High Biobased Content as Pharmaceutically Relevant Molecular Encapsulation and Release Platform. ACS Applied Materials & Interfaces, 2021, 13, 40229-40248.	8.0	10
6	Strong, Ductile, Transparent, Water-Resistant Cellulose Nanofibril Composite Films via UV-Induced Inter-Cross-Linked Networks. ACS Sustainable Chemistry and Engineering, 2021, 9, 10749-10760.	6.7	16
7	UV-Curable Cellulose Nanofiber-Reinforced Soy Protein Resins for 3D Printing and Conventional Molding. ACS Applied Polymer Materials, 2020, 2, 4666-4676.	4.4	23
8	Cellulose Mediated Transferrin Nanocages for Enumeration of Circulating Tumor Cells for Head and Neck Cancer. Scientific Reports, 2020, 10, 10010.	3.3	18
9	High-Performance Styrene-Butadiene Rubber Nanocomposites Reinforced by Surface-Modified Cellulose Nanofibers. ACS Omega, 2019, 4, 13189-13199.	3.5	52
10	The role of mandrel rotation speed on morphology and mechanical properties of polyethylene pipes produced by rotational shear. Polymer, 2019, 184, 121915.	3.8	19
11	Comparative study of zein- and gluten-based wood adhesives containing cellulose nanofibers and crosslinking agent for improved bond strength. International Journal of Adhesion and Adhesives, 2019, 92, 44-57.	2.9	28
12	Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of Poly(lactic acid)– zinc oxide composites. Polymer Engineering and Science, 2019, 59, 1242-1249.	3.1	15
13	A Highâ€Ligninâ€Content, Removable, and Glycolâ€Assisted Repairable Coating Based on Dynamic Covalent Bonds. ChemSusChem, 2019, 12, 1049-1058.	6.8	89
14	Cellulose nanofibers produced from various agricultural residues and their reinforcement effects in polymer nanocomposites. Journal of Applied Polymer Science, 2018, 135, 46304.	2.6	28
15	Freestanding carbon aerogels produced from bacterial cellulose and its Ni/MnO2/Ni(OH)2 decoration for supercapacitor electrodes. Journal of Applied Electrochemistry, 2018, 48, 495-507.	2.9	23
16	Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings. Sustainability, 2018, 10, 2657.	3.2	7
17	Using hydrodynamic focusing to predictably alter the diameter of synthetic silk fibers. PLoS ONE, 2018, 13, e0195522.	2.5	7
18	Soy-Based Soft Matrices for Encapsulation and Delivery of Hydrophilic Compounds. Polymers, 2018, 10, 583	4.5	3

LONG JIANG

#	Article	IF	CITATIONS
19	Roles of Graphene Oxide in Hydrothermal Carbonization and Microwave Irradiation of Distiller's Dried Grains with Solubles To Produce Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2017, 5, 5588-5597.	6.7	23
20	Alcohol Recognition by Flexible, Transparent and Highly Sensitive Graphene-Based Thin-Film Sensors. Scientific Reports, 2017, 7, 4317.	3.3	30
21	Biodegradable and Biobased Polymers. , 2017, , 127-143.		30
22	Development of Candle Soot Based Carbon Nanoparticles (CNPs)/Polyaniline Electrode and Its Comparative Study with CNPs/MnO2 in Supercapacitors. Electrochimica Acta, 2016, 210, 190-198.	5.2	25
23	Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale, 2016, 8, 12294-12306.	5.6	127
24	Recycling carbon fiber composites using microwave irradiation: Reinforcement study of the recycled fiber in new composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	41
25	Graphene Nanoplatelets as Rheology Modifiers for Polylactic Acid: Graphene Aspect-Ratio-Dependent Nonlinear Rheological Behavior. Industrial & Engineering Chemistry Research, 2015, 54, 8175-8182.	3.7	36
26	Flexible, Highly Graphitized Carbon Aerogels Based on Bacterial Cellulose/Lignin: Catalystâ€Free Synthesis and its Application in Energy Storage Devices. Advanced Functional Materials, 2015, 25, 3193-3202.	14.9	262
27	Development of Low-Cost DDGS-Based Activated Carbons and Their Applications in Environmental Remediation and High-Performance Electrodes for Supercapacitors. Journal of Polymers and the Environment, 2015, 23, 595-605.	5.0	12
28	Fiber Spinning of Polyacrylonitrile Grafted Soy Protein in an Ionic Liquid/DMSO Mixture Solvent. Journal of Polymers and the Environment, 2014, 22, 17-26.	5.0	16
29	Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability. Carbon, 2014, 80, 91-102.	10.3	76
30	Ultra-violet degradation behavior of polymeric backsheets for photovoltaic modules. Solar Energy, 2014, 108, 88-100.	6.1	60
31	Comparison between Cellulose Nanocrystal and Cellulose Nanofibril Reinforced Poly(ethylene oxide) Nanofibers and Their Novel Shish-Kebab-Like Crystalline Structures. Macromolecules, 2014, 47, 3409-3416.	4.8	124
32	Needleless emulsion electrospinning for scalable fabrication of core–shell nanofibers. Journal of Applied Polymer Science, 2014, 131, .	2.6	21
33	The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses. Journal of Materials Chemistry C, 2014, 2, 9903-9910.	5.5	193
34	Study on the Effect of Dicumyl Peroxide on Structure and Properties of Poly(Lactic Acid)/Natural Rubber Blend. Journal of Polymers and the Environment, 2013, 21, 375-387.	5.0	52
35	Preparation and properties of aligned poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydrate Polymers, 2013, 92, 206-213.	10.2	51
36	PLA/sepiolite and PLA/calcium carbonate nanocomposites: A comparison study. Journal of Applied Polymer Science, 2013, 129, 1734-1744.	2.6	34

LONG JIANG

#	Article	IF	CITATIONS
37	Biodegradable Polymers and Polymer Blends. , 2013, , 109-128.		27
38	Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils. Materials Letters, 2013, 109, 175-178.	2.6	53
39	Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Applied Materials & Interfaces, 2013, 5, 2999-3009.	8.0	773
40	Graphene nanoplatelets as poly(lactic acid) modifier: linear rheological behavior and electrical conductivity. Journal of Materials Chemistry A, 2013, 1, 8253.	10.3	125
41	Strategies for Preparation of Oriented Cellulose Nanowhiskers Composites. ACS Symposium Series, 2012, , 17-36.	0.5	4
42	Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydrate Polymers, 2012, 90, 541-550.	10.2	86
43	Effects of Cellulose Nanowhiskers on Mechanical, Dielectric, and Rheological Properties of Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate)/Cellulose Nanowhisker Composites. Industrial & Engineering Chemistry Research, 2012, 51, 2941-2951.	3.7	108
44	Preparation and Properties of Electrospun Soy Protein Isolate/Polyethylene Oxide Nanofiber Membranes. ACS Applied Materials & Interfaces, 2012, 4, 4331-4337.	8.0	170
45	Morphology and Properties of Thermoplastic Sugar Beet Pulp and Poly(butylene) Tj ETQq1 1 0.784314 rgBT /C	Overlock 10	Tf 50 422 Td
46	Biodegradable and Biobased Polymers. , 2011, , 145-158.		7
47	Development of Biodegradable Polymer Composites. ACS Symposium Series, 2011, , 367-391.	0.5	2
48	Study of Effects of Processing Aids on Properties of Poly(lactic acid)/Soy Protein Blends. Journal of Polymers and the Environment, 2011, 19, 239-247.	5.0	15
49	Extrusion Foaming of Poly (lactic acid)/Soy Protein Concentrate Blends. Macromolecular Materials and Engineering, 2011, 296, 835-842.	3.6	19
50	Parameter dependence of conic angle of nanofibres during electrospinning. Journal Physics D: Applied Physics, 2011, 44, 435401.	2.8	16
51	Different Effects of Water and Glycerol on Morphology and Properties of Poly(lactic acid)/Soy Protein Concentrate Blends. Macromolecular Materials and Engineering, 2010, 295, 123-129.	3.6	9
52	Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer, 2010, 51, 2652-2660.	3.8	213
53	Reinforcing and Toughening Effects of Bamboo Pulp Fiber on Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Fiber Composites. Industrial & Engineering Chemistry Research, 2010, 49, 572-577.	3.7	55
54	Synergetic Effect of Dual Compatibilizers on in Situ Formed Poly(Lactic Acid)/Soy Protein Composites. Industrial & Engineering Chemistry Research, 2010, 49, 6399-6406.	3.7	47

Long Jiang

#	Article	IF	CITATIONS
55	Novel Highâ€Strength Thermoplastic Starch Reinforced by in situ Poly(lactic acid) Fibrillation. Macromolecular Materials and Engineering, 2009, 294, 301-305.	3.6	75
56	Properties of Poly(lactic acid)/Poly(butylene adipate- <i>co</i> -terephthalate)/Nanoparticle Ternary Composites. Industrial & Engineering Chemistry Research, 2009, 48, 7594-7602.	3.7	123
57	Study of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/Bamboo Pulp Fiber Composites: Effects of Nucleation Agent and Compatibilizer. Journal of Polymers and the Environment, 2008, 16, 83-93.	5.0	84
58	Study of the Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker Composites Prepared by Solution Casting and Melt Processing. Journal of Composite Materials, 2008, 42, 2629-2645.	2.4	181
59	Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer, 2007, 48, 7632-7644.	3.8	358
60	Flexural properties of surface reinforced wood/plastic deck board. Polymer Engineering and Science, 2007, 47, 281-288.	3.1	35
61	Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules, 2006, 7, 199-207.	5.4	828
62	Morphology and Properties of Soy Protein and Polylactide Blends. Biomacromolecules, 2006, 7, 1551-1561.	5.4	159
63	Self-reinforcement of high-density polyethylene/low-density polyethylene prepared by oscillating packing injection molding under low pressure. Journal of Applied Polymer Science, 1999, 71, 799-804.	2.6	24