## Katherine A Mirica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3247621/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Unraveling the Electrical and Magnetic Properties of Layered Conductive Metalâ€Organic Framework<br>With Atomic Precision. Angewandte Chemie, 2022, 134, e202113569.                                                                              | 2.0  | 14        |
| 2  | Bimetallic Twoâ€Dimensional Metal–Organic Frameworks for the Chemiresistive Detection of Carbon<br>Monoxide. Angewandte Chemie, 2022, 134, e202113665.                                                                                            | 2.0  | 5         |
| 3  | Unraveling the Electrical and Magnetic Properties of Layered Conductive Metalâ€Organic Framework<br>With Atomic Precision. Angewandte Chemie - International Edition, 2022, 61, .                                                                 | 13.8 | 27        |
| 4  | Bimetallic Twoâ€Dimensional Metal–Organic Frameworks for the Chemiresistive Detection of Carbon<br>Monoxide. Angewandte Chemie - International Edition, 2022, 61, e202113665.                                                                     | 13.8 | 21        |
| 5  | Two-dimensional d-ï€ conjugated metal-organic framework based on hexahydroxytrinaphthylene. Nano<br>Research, 2021, 14, 369-375.                                                                                                                  | 10.4 | 49        |
| 6  | Stimuli-responsive temporary adhesives: enabling debonding on demand through strategic molecular design. Chemical Science, 2021, 12, 15183-15205.                                                                                                 | 7.4  | 22        |
| 7  | Covalent organic frameworks as multifunctional materials for chemical detection. Chemical Society<br>Reviews, 2021, 50, 13498-13558.                                                                                                              | 38.1 | 114       |
| 8  | Conductive Stimuli-Responsive Coordination Network Linked with Bismuth for Chemiresistive Gas Sensing. ACS Applied Materials & amp; Interfaces, 2021, 13, 60306-60318.                                                                            | 8.0  | 8         |
| 9  | Crystal Engineering of Molecular Solids as Temporary Adhesives. Chemistry of Materials, 2020, 32, 9882-9896.                                                                                                                                      | 6.7  | 9         |
| 10 | Hierarchical Tuning of the Performance of Electrochemical Carbon Dioxide Reduction Using<br>Conductive Two-Dimensional Metallophthalocyanine Based Metal–Organic Frameworks. Journal of<br>the American Chemical Society, 2020, 142, 21656-21669. | 13.7 | 129       |
| 11 | Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials.<br>Chemistry of Materials, 2020, 32, 5372-5409.                                                                                                    | 6.7  | 24        |
| 12 | Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals.<br>Journal of the American Chemical Society, 2020, 142, 11717-11733.                                                                                  | 13.7 | 159       |
| 13 | Host–Guest Interactions and Redox Activity in Layered Conductive Metal–Organic Frameworks.<br>Chemistry of Materials, 2020, 32, 7639-7652.                                                                                                        | 6.7  | 43        |
| 14 | Two-Dimensional Chemiresistive Covalent Organic Framework with High Intrinsic Conductivity.<br>Journal of the American Chemical Society, 2019, 141, 11929-11937.                                                                                  | 13.7 | 313       |
| 15 | Proton Conduction in 2D Aza-Fused Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 819-825.                                                                                                                                         | 6.7  | 181       |
| 16 | Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical<br>Reviews, 2019, 119, 478-598.                                                                                                                         | 47.7 | 521       |
| 17 | Welding Metallophthalocyanines into Bimetallic Molecular Meshes for Ultrasensitive, Low-Power<br>Chemiresistive Detection of Gases. Journal of the American Chemical Society, 2019, 141, 2046-2053.                                               | 13.7 | 225       |
|    |                                                                                                                                                                                                                                                   |      |           |

18 Introduction: Chemical Sensors. Chemical Reviews, 2019, 119, 1-2.

47.7 36

KATHERINE A MIRICA

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | 3D Nanostructures by Stacking Patterned Membranes. , 2018, , .                                                                                                                                           |      | Ο         |
| 20 | Conductive Metal–Organic Frameworks as Ion-to-Electron Transducers in Potentiometric Sensors.<br>ACS Applied Materials & Interfaces, 2018, 10, 19248-19257.                                              | 8.0  | 101       |
| 21 | Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chemical<br>Communications, 2018, 54, 7873-7891.                                                                       | 4.1  | 373       |
| 22 | Polycyclic Aromatic Hydrocarbons as Sublimable Adhesives. Chemistry of Materials, 2017, 29, 2788-2793.                                                                                                   | 6.7  | 8         |
| 23 | Fabrication of Solid-State Gas Sensors by Drawing: An Undergraduate and High School Introduction to Functional Nanomaterials and Chemical Detection. Journal of Chemical Education, 2017, 94, 1933-1938. | 2.3  | 9         |
| 24 | Self-Organized Frameworks on Textiles (SOFT): Conductive Fabrics for Simultaneous Sensing, Capture, and Filtration of Gases. Journal of the American Chemical Society, 2017, 139, 16759-16767.           | 13.7 | 231       |
| 25 | Porous Scaffolds for Electrochemically Controlled Reversible Capture and Release of Ethylene.<br>Journal of the American Chemical Society, 2017, 139, 17229-17232.                                       | 13.7 | 51        |
| 26 | Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite. Sensors, 2017, 17, 2192.                                                                                               | 3.8  | 90        |
| 27 | Direct Self-Assembly of Conductive Nanorods of Metal–Organic Frameworks into Chemiresistive<br>Devices on Shrinkable Polymer Films. Chemistry of Materials, 2016, 28, 5264-5268.                         | 6.7  | 171       |
| 28 | NanodrÃ⊭te in Chemo―und Biosensoren: aktueller Stand und Fahrplan für die Zukunft. Angewandte<br>Chemie, 2016, 128, 1286-1302.                                                                           | 2.0  | 10        |
| 29 | Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future. Angewandte Chemie -<br>International Edition, 2016, 55, 1266-1281.                                                            | 13.8 | 237       |
| 30 | Employing Halogen Bonding Interactions in Chemiresistive Gas Sensors. ACS Sensors, 2016, 1, 115-119.                                                                                                     | 7.8  | 42        |
| 31 | Wireless gas detection with a smartphone via rf communication. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18162-18166.                                  | 7.1  | 185       |
| 32 | Fully-drawn carbon-based chemical sensors on organic and inorganic surfaces. Lab on A Chip, 2014, 14, 4059-4066.                                                                                         | 6.0  | 34        |
| 33 | Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3265-70.                             | 7.1  | 137       |
| 34 | Mechanical Drawing of Gas Sensors on Paper. Angewandte Chemie - International Edition, 2012, 51,<br>10740-10745.                                                                                         | 13.8 | 152       |
| 35 | Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper. Analytical Chemistry, 2009, 81, 8447-8452.                                     | 6.5  | 360       |
| 36 | Photochemical Control of the Mechanical and Adhesive Properties of Crystalline Molecular Solids.<br>Crystal Growth and Design, 0, , .                                                                    | 3.0  | 1         |