
Xing Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3247073/publications.pdf Version: 2024-02-01

XINC XINC

#	Article	IF	CITATIONS
1	A step towards the application of molecular plasmonic-like excitations of PAH derivatives in organic electrochromics. Chinese Chemical Letters, 2023, 34, 107550.	9.0	0
2	Soluble Two-Dimensional Donor–Acceptor Aza-Fused Aromatic Frameworks and their Electrochromism between the Visible and Near-Infrared Regions. Chemistry of Materials, 2022, 34, 4896-4909.	6.7	5
3	Tuning the UV/Vis Absorption Spectra of Electrochromic Small Molecular Radicals Through Bridge Modulation. ChemPhysChem, 2021, 22, 1684-1691.	2.1	3
4	A Highly Conductive All arbon Linked 3D Covalent Organic Framework Film. Small, 2021, 17, e2103152.	10.0	23
5	Highly-concentrated electrolyte incorporating Li-ion solvation sheath interphase for encapsulation-free organic electrochromic devices. Electrochimica Acta, 2021, 390, 138870.	5.2	2
6	In-situ synthesis of large-area PANI films via sequential solution polymerization technique for electrochromic applications. Giant, 2021, 8, 100072.	5.1	11
7	Highly Efficient Flexible Organic Light Emitting Transistor Based on Highâ€ <i>k</i> Polymer Gate Dielectric. Advanced Optical Materials, 2020, 8, 1901651.	7.3	35
8	The Effect of Oligo(Ethylene Oxide) Side Chains: A Strategy to Improve Contrast and Switching Speed in Electrochromic Polymers. ChemPhysChem, 2020, 21, 321-327.	2.1	13
9	Host-Free Deep-Blue Organic Light-Emitting Transistors Based on a Novel Fluorescent Emitter. ACS Applied Materials & Interfaces, 2020, 12, 40558-40565.	8.0	12
10	Multicolored Cathodically Coloring Electrochromism and Electrofluorochromism in Regioisomeric Star-Shaped Carbazole Dibenzofurans. ACS Applied Materials & Interfaces, 2020, 12, 24156-24164.	8.0	31
11	Multi-colour electrochromic materials based on polyaromatic esters with low driving voltage. Journal of Materials Chemistry C, 2019, 7, 9467-9473.	5.5	21
12	Low-Voltage, High-Performance Flexible Organic Field-Effect Transistors Based on Ultrathin Single-Crystal Microribbons. ACS Applied Materials & Interfaces, 2019, 11, 34188-34195.	8.0	18
13	A "chain–lock―strategy to construct a conjugated copolymer network for supercapacitor applications. Journal of Materials Chemistry A, 2019, 7, 116-123.	10.3	29
14	Electrochromic Smart Windows Can Achieve an Absolute Private State through Thermochromically Engineered Electrolyte. Advanced Energy Materials, 2019, 9, 1900433.	19.5	88
15	Fast switching polymeric electrochromics with facile processed water dispersed nanoparticles. Nano Energy, 2018, 47, 123-129.	16.0	23
16	Surface tailoring of newly developed amorphous Zn Si O thin films as electron injection/transport layer by plasma treatment: Application to inverted OLEDs and hybrid solar cells. Applied Surface Science, 2018, 434, 995-1000.	6.1	7
17	Thieno[3,2- <i>b</i>]thiophene-based conjugated copolymers for solution-processable neutral black electrochromism. Polymer Chemistry, 2018, 9, 5608-5616.	3.9	46
18	The trade-off between electrochromic stability and contrast of a thiophene—Quinoxaline copolymer. Electrochimica Acta, 2017, 253, 530-535.	5.2	21

XING XING

#	Article	IF	CITATIONS
19	The Effect of Electronâ€Withdrawing Groups on Electron Transporting Silane Derivatives with Wide Energy Gap for Green Electrophosphorescent Devices. Advanced Electronic Materials, 2015, 1, 1400034.	5.1	11
20	A pure blue emitter (CIEy â‰^0.08) of chrysene derivative with high thermal stability for OLED. Journal of Materials Chemistry C, 2015, 3, 1794-1798.	5.5	47
21	Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride. Scientific Reports, 2014, 4, 5071.	3.3	40
22	Essential Differences of Organic Films at the Molecular Level via Vacuum Deposition and Solution Processes for Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2013, 117, 25405-25408.	3.1	54
23	Highly Efficient Electronâ€Transporting/Injecting and Thermally Stable Naphthyridines for Organic Electrophosphorescent Devices. Advanced Functional Materials, 2013, 23, 1323-1330.	14.9	41
24	Highly Efficient Polymer Solar Cells by using the Homogeneous Selfâ€Assembly of a Sulphydryl apped Photoactive Polymer Covalently Bound to the Anode. Energy Technology, 2013, 1, 613-616.	3.8	17
25	Progress of efficiency enhancement of organic light-emitting diodes via surface plasmon. Scientia Sinica Chimica, 2013, 43, 418-426.	0.4	1

é«~æ•^è"色有机å'å...‰æœ–™ä,Žå™"ä»¶. Scientia Sinica: Physica, Mechanica Et Astronomica, 2013, 43, 10345-11430

27	A Deep-Blue Emitter with Electron Transporting Property to Improve Charge Balance for Organic Light-Emitting Device. ACS Applied Materials & Interfaces, 2012, 4, 2877-2880.	8.0	60
28	Spirobifluorene derivative: a pure blue emitter (CIEy â‰^0.08) with high efficiency and thermal stability. Journal of Materials Chemistry, 2012, 22, 15136.	6.7	30
29	An alternative way to use the triplet energy of fluorescent dyes in organic light-emitting devices via an external iodide. Organic Electronics, 2012, 13, 195-198.	2.6	1
30	A weak electron transporting material with high triplet energy and thermal stability via a super twisted structure for high efficient blue electrophosphorescent devices. Journal of Materials Chemistry, 2011, 21, 19058.	6.7	12
31	Highly Efficient Blue Electrophosphorescent Device Using a Weak Electron Transporting Material. , 2011, , .		0