Anton Ficai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3246300/publications.pdf

Version: 2024-02-01

208 papers 5,111 citations

38 h-index 63 g-index

231 all docs

231 docs citations

231 times ranked

6301 citing authors

#	Article	IF	CITATIONS
1	Microelectromechanical Systems Based on Magnetic Polymer Films. Micromachines, 2022, 13, 351.	2.9	3
2	Mesoporous Silica Systems Loaded with Polyphenols. , 2022, 7, .		0
3	Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems—A Review. International Journal of Molecular Sciences, 2022, 23, 3591.	4.1	39
4	Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics, 2022, 14, 770.	4.5	26
5	From Biomedical Applications of Alginate towards CVD Implications Linked to COVID-19. Pharmaceuticals, 2022, 15, 318.	3.8	4
6	Bee Pollen Extracts: Chemical Composition, Antioxidant Properties, and Effect on the Growth of Selected Probiotic and Pathogenic Bacteria. Antioxidants, 2022, 11, 959.	5.1	15
7	Fabrication of Electrospun Juglans regia (Juglone) Loaded Poly(lactic acid) Scaffolds as a Potential Wound Dressing Material. Polymers, 2022, 14, 1971.	4.5	6
8	Mesoporous Silica Materials Loaded with Gallic Acid with Antimicrobial Potential. Nanomaterials, 2022, 12, 1648.	4.1	17
9	Porous Materials as Platforms for the Delivery of Polyphenols. , 2022, 7, .		0
10	Organometallic Compounds and Metal Complexes in Cancer Therapy. , 2022, 7, .		0
11	Comparative Antimicrobial Activity of Silver Nanoparticles Obtained by Wet Chemical Reduction and Solvothermal Methods. International Journal of Molecular Sciences, 2022, 23, 5982.	4.1	20
12	Antioxidative Defense and Gut Microbial Changes under Pollution Stress in Carassius gibelio from Bucharest Lakes. International Journal of Environmental Research and Public Health, 2022, 19, 7510.	2.6	3
13	Antimicrobial Properties of TiO2 Microparticles Coated with Ca- and Cu-Based Composite Layers. International Journal of Molecular Sciences, 2022, 23, 6888.	4.1	3
14	Novel Graphene Oxide/Quercetin and Graphene Oxide/Juglone Nanostructured Platforms as Effective Drug Delivery Systems with Biomedical Applications. Nanomaterials, 2022, 12, 1943.	4.1	18
15	Profiling of Phenolic Compounds and Triterpene Acids of Twelve Apple (Malus domestica Borkh.) Cultivars. Foods, 2021, 10, 267.	4.3	15
16	Evaluation of in Vitro Corrosion Behavior of Titanium Oxynitride Coated Stainless Steel Stents. IEEE Access, 2021, 9, 59766-59782.	4.2	3
17	Advances in Osteoporotic Bone Tissue Engineering. Journal of Clinical Medicine, 2021, 10, 253.	2.4	38
18	Collagen-Carboxymethylcellulose Biocomposite Wound-Dressings with Antimicrobial Activity. Materials, 2021, 14, 1153.	2.9	22

#	Article	IF	Citations
19	Composite P(3HB-3HV)-CS Spheres for Enhanced Antibiotic Efficiency. Polymers, 2021, 13, 989.	4.5	2
20	Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics, 2021, 13, 613.	4. 5	32
21	Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification—A Review. Materials, 2021, 14, 2091.	2.9	48
22	Propolis-Based Nanofiber Patches to Repair Corneal Microbial Keratitis. Molecules, 2021, 26, 2577.	3.8	31
23	Production, Optimization and Characterization of Polylactic Acid Microparticles Using Electrospray with Porous Structure. Applied Sciences (Switzerland), 2021, 11, 5090.	2.5	18
24	New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives with MI-Crobicidal and Antibiofilm Activity Enhanced by Combination with Iron Oxide Nanoparticles. Molecules, 2021, 26, 3002.	3.8	6
25	Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications. Pharmaceutics, 2021, 13, 957.	4.5	59
26	Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oilâ€"A Novel Antimicrobial Structure. Pharmaceutics, 2021, 13, 1020.	4.5	85
27	Zinc Oxide Nanoparticles for Water Purification. Materials, 2021, 14, 4747.	2.9	44
28	Nano-Hydroxyapatite vs. Xenografts: Synthesis, Characterization, and In Vitro Behavior. Nanomaterials, 2021, 11, 2289.	4.1	26
29	Antibacterial Biodegradable Films Based on Alginate with Silver Nanoparticles and Lemongrass Essential Oil–Innovative Packaging for Cheese. Nanomaterials, 2021, 11, 2377.	4.1	66
30	Non-invasive microanalysis of a written page from the Romanian heritage "The Homiliary of Varlaam (Cazania lui Varlaam)― Microchemical Journal, 2021, 168, 106345.	4.5	5
31	Plasmon-Enhanced Photoresponse of Self-Powered Si Nanoholes Photodetector by Metal Nanowires. Nanomaterials, 2021, 11, 2460.	4.1	7
32	Acetylcholinesterase entrapment onto carboxyl-modified single-walled carbon nanotubes and poly (3,4-ethylenedioxythiophene) nanocomposite, film electrosynthesis characterization, and sensor application for dichlorvos detection in apple juice. Microchemical Journal, 2021, 169, 106573.	4.5	9
33	Antimicrobial Films based on Chitosan, Collagen, and ZnO for Skin Tissue Regeneration. Biointerface Research in Applied Chemistry, 2021, 11, 11985-11995.	1.0	12
34	Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson's Disease. Applied Sciences (Switzerland), 2021, 11, 10727.	2.5	17
35	Magnetite-Silica Core/Shell Nanostructures: From Surface Functionalization towards Biomedical Applications—A Review. Applied Sciences (Switzerland), 2021, 11, 11075.	2.5	20
36	Bioactive Glassâ€"An Extensive Study of the Preparation and Coating Methods. Coatings, 2021, 11, 1386.	2.6	30

#	Article	IF	Citations
37	Improvement of antibacterial and biocompatibility properties of electrospray biopolymer films by ZnO and MCM-41. Polymer Bulletin, 2020, 77, 3657-3675.	3.3	6
38	Simple and dual cross-linked chitosan millicapsules as a particulate support for cell culture. International Journal of Biological Macromolecules, 2020, 143, 200-212.	7.5	8
39	Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods, 2020, 9, 1438.	4.3	179
40	An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics, 2020, 12, 983.	4. 5	116
41	The Antibacterial Action of Various Silver Nanoparticles Used for the Stone Treatment. Proceedings (mdpi), 2020, 57, .	0.2	0
42	Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes. International Journal of Molecular Sciences, 2020, 21, 8082.	4.1	24
43	Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents. Molecules, 2020, 25, 3814.	3.8	62
44	Smart Food Packaging Designed by Nanotechnological and Drug Delivery Approaches. Coatings, 2020, 10, 806.	2.6	34
45	Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies. Molecules, 2020, 25, 4069.	3.8	41
46	Innovative Antimicrobial Chitosan/ZnO/Ag NPs/Citronella Essential Oil Nanocomposite—Potential Coating for Grapes. Foods, 2020, 9, 1801.	4.3	81
47	3D Propolis-Sodium Alginate Scaffolds: Influence on Structural Parameters, Release Mechanisms, Cell Cytotoxicity and Antibacterial Activity. Molecules, 2020, 25, 5082.	3.8	34
48	Nanostructured Fibers Containing Natural or Synthetic Bioactive Compounds in Wound Dressing Applications. Materials, 2020, 13, 2407.	2.9	31
49	Polycaprolactone/Gelatin/Hyaluronic Acid Electrospun Scaffolds to Mimic Glioblastoma Extracellular Matrix. Materials, 2020, 13, 2661.	2.9	27
50	Controlling the Degradation Rate of Biodegradable Mg–Zn-Mn Alloys for Orthopedic Applications by Electrophoretic Deposition of Hydroxyapatite Coating. Materials, 2020, 13, 263.	2.9	36
51	Recent Advances in Manufacturing Innovative Stents. Pharmaceutics, 2020, 12, 349.	4.5	72
52	Design and Performances of Medical Devices: From Bulk to Surface Modification. Current Medicinal Chemistry, 2020, 27, 1579-1579.	2.4	0
53	Chitosan/Graphene Oxide Nanocomposite Membranes as Adsorbents with Applications in Water Purification. Materials, 2020, 13, 1687.	2.9	46
54	Optimized Synthesis Approaches of Metal Nanoparticles with Antimicrobial Applications. Journal of Nanomaterials, 2020, 2020, $1-14$.	2.7	42

#	Article	IF	CITATIONS
55	Surface Modification of Poly(Vinylchloride) for Manufacturing Advanced Catheters. Current Medicinal Chemistry, 2020, 27, 1616-1633.	2.4	10
56	SPONGIOUS FILLERS BASED ON COLLAGEN – HYDROXYAPATITE – EUGENOL ACETATE WITH THERAPEUTIC POTENTIAL IN BONE CANCER. Farmacia, 2020, 68, 313-321.	0.4	5
57	Soil Burial Biodegradation of PLA/Hydrolysed Collagen/Silver Manoparticles Bionanocomposites. Revista De Chimie (discontinued), 2020, 71, 128-135.	0.4	1
58	PHYSICO-CHEMICAL CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A CONTROLLED COLLAGEN-HYDROXYAPATITE-CIPROFLOXACIN RELEASE SYSTEM. Farmacia, 2020, 68, 1055-1061.	0.4	0
59	Single Step Synthesis of Glutamic/tartaric Acid-stabilised Fe3O4 Nanoparticles for Targeted Delivery Systems. Revista De Chimie (discontinued), 2020, 71, 230-238.	0.4	1
60	Biogenic synthesis of silver nanoparticles using sea buckthorn fruits aqueous extract and antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. , 2020, , .		0
61	Advanced Drug-Eluting Poly (Vinyl Chloride) Surfaces Deposited by Spin Coating. Medicina (Lithuania), 2019, 55, 421.	2.0	3
62	Evaluation and Exploitation of Bioactive Compounds of Walnut, Juglans regia. Current Pharmaceutical Design, 2019, 25, 119-131.	1.9	23
63	Electrospun Polyethylene Terephthalate Nanofibers Loaded with Silver Nanoparticles: Novel Approach in Anti-Infective Therapy. Journal of Clinical Medicine, 2019, 8, 1039.	2.4	33
64	Controlled Release of Metformin Hydrochloride from Core-Shell Nanofibers with Fish Sarcoplasmic Protein. Medicina (Lithuania), 2019, 55, 682.	2.0	15
65	Antibiotic Incidence, Distribution and Resistance in Wastewaters. Proceedings (mdpi), 2019, 29, .	0.2	O
66	Structural features and nitrogen positions in titanium oxynitride films grown in plasma of magnetron discharge. Journal of Physics: Conference Series, 2019, 1281, 012062.	0.4	6
67	Obtaining SiO2 Nanopowders Using Microwave Field Processing. , 2019, , .		О
68	The Role of Susceptors in the Process of, Obtaining Nanopowders Using Microwaves. , 2019, , .		1
69	Triggering Factors in Drug Delivery Devices. Current Pharmaceutical Design, 2019, 25, 107-108.	1.9	2
70	Surface evaluation of titanium oxynitride coatings used for developing layered cardiovascular stents. Materials Science and Engineering C, 2019, 99, 405-416.	7. 3	28
71	Multifunctional Platforms Based on Graphene Oxide and Natural Products. Medicina (Lithuania), 2019, 55, 230.	2.0	23
72	Nanoarchitectonics prepared by laser processing and their biomedicinal applications., 2019,, 23-53.		0

#	Article	IF	Citations
73	Biomimetic Collagen/Zn2+-Substituted Calcium Phosphate Composite Coatings on Titanium Substrates as Prospective Bioactive Layer for Implants: A Comparative Study Spin Coating vs. MAPLE. Nanomaterials, 2019, 9, 692.	4.1	14
74	New Challenges in Cancer Treatment, from Novel Agents to Innovative Administration. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 4-5.	1.7	1
75	Electrospun nanofibers for tissue engineering applications. , 2019, , 77-95.		8
76	Successful Release of Voriconazole and Flavonoids from MAPLE Deposited Bioactive Surfaces. Applied Sciences (Switzerland), 2019, 9, 786.	2.5	6
77	Flax Fibres Fabric Surface Decoration with Nanoparticles - A Promising Tool for Developing Hybrid Reinforcing Agent of Thermoplastic Polymers. Fibers and Polymers, 2019, 20, 2407-2415.	2.1	1
78	Hybrid Magnetic Nanostructures For Cancer Diagnosis And Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 6-16.	1.7	6
79	Novel hydrogels based on collagen and ZnO nanoparticles with antibacterial activity for improved wound dressings. Romanian Biotechnological Letters, 2019, 24, 317-323.	0.5	13
80	Bone - Graft Delivery Systems of Type PLGA- gentamicin and Collagen - hydroxyapatite - gentamicine. Materiale Plastice, 2019, 56, 534-527.	0.8	8
81	Influence of adding functionalized microparticles on the physical-mechanical, structural, and processability properties of thermoplastic rubber. Leather and Footwear Journal, 2019, 19, 29-40.	0.2	0
82	MAPLE fabricated coatings based on magnetite nanoparticles embedded into biopolymeric spheres resistant to microbial colonization. Applied Surface Science, 2018, 448, 230-236.	6.1	15
83	Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite. BioNanoScience, 2018, 8, 154-165.	3.5	9
84	Synthesis of TiO2 doped selenium nanoparticles using herbal turmeric powders coating on cotton fabric for antibacterial. Journal of Physics: Conference Series, 2018, 1144, 012008.	0.4	2
85	Antibiofilm Coatings Based on PLGA and Nanostructured Cefepime-Functionalized Magnetite. Nanomaterials, 2018, 8, 633.	4.1	23
86	Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials, 2018, 8, 681.	4.1	828
87	MAPLE deposition of Nigella sativa functionalized Fe3O4 nanoparticles for antimicrobial coatings. Applied Surface Science, 2018, 455, 513-521.	6.1	24
88	Applications of mesoporous silica in biosensing and controlled release of insulin. International Journal of Pharmaceutics, 2018, 549, 179-200.	5.2	28
89	Chitosan/poly(ethylene glycol)/hyaluronic acid biocompatible patches obtained by electrospraying. Biomedical Materials (Bristol), 2018, 13, 055011.	3.3	8
90	Collagen/hydroxyapatite bone grafts manufactured by homogeneous/heterogeneous 3D printing. Materials Letters, 2018, 231, 179-182.	2.6	29

#	Article	IF	CITATIONS
91	Editorial: Smart Drug Delivery Systems (Part 1). Current Drug Targets, 2018, 19, 201.	2.1	0
92	Functionalized Magnetic Nanostructures for Anticancer Therapy. Current Drug Targets, 2018, 19, 239-247.	2.1	8
93	Editorial: Smart Drug Delivery Systems (Part 2). Current Drug Targets, 2018, 19, 299-299.	2.1	0
94	Advances in Drug Delivery Systems, from 0 to 3D superstructures. Current Drug Targets, 2018, 19, 393-405.	2.1	13
95	Biohydrogels for medical applications: A short review. Organic Communications, 2018, 11", 123-141.	0.8	3
96	ANTIBACTERIAL POLYMERIC NANOCOMPOSITES BASED ON PVC AND FUNCTIONALIZED TiO2 NANOPARTICLES WITH APPLICATION IN THE MEDICAL AND FOOD INDUSTRIES. , 2018, , .		0
97	Polyamide/polyethylene/graphite nanocomposites: development and morpho-structural and physical-mechanical characterisation. Leather and Footwear Journal, 2018, 18, 231-238.	0.2	O
98	Identifying the Optimum Method for Modifying the Zinc Oxide Surface in order to Obtain a High Deposit Degree of the Functioning Agent. , 2018 , , .		0
99	Polyamide/Polypropylene/Graphite Nanocomposites with Functional Compatibilizers., 2018,,.		O
100	The Influence of EVA and PE-g-AM Compatibilizers on the Processability, Mechanical and Structural Properties of Recycled PET / HDPE Mix. , 2018 , , .		1
101	Manufacturing nanostructured chitosan-based 2D sheets with prolonged antimicrobial activity. Romanian Journal of Morphology and Embryology, 2018, 59, 517-525.	0.8	6
102	Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Materials Science and Engineering C, 2017, 77, 470-475.	7.3	33
103	Nanotechnology: a challenge in hard tissue engineering withÂemphasis on bone cancer therapy. , 2017, , 513-539.		4
104	Polymer nanocomposites PE/PE-g-MA/EPDM/nanoZnO and TiO2 dynamically crosslinked with sulphur and accelerators. Procedia Structural Integrity, 2017, 5, 667-674.	0.8	3
105	Polyamide/Polypropylene/graphene oxide nanocomposites with functional compatibilizers: Morpho-structural and physico-mechanical characterization. Procedia Structural Integrity, 2017, 5, 675-682.	0.8	10
106	Prevention of biofilm formation by material modification., 2017,, 159-180.		1
107	Zinc Oxide Nanostrucures. , 2017, , 503-514.		1
108	Development of Stabilized Magnetite Nanoparticles for Medical Applications. Journal of Nanomaterials, 2017, 2017, 1-9.	2.7	18

#	Article	IF	Citations
109	Recent advances in using magnetic materials for environmental applications., 2017,, 1-32.		1
110	Characterization of Cu/Ag/Eu/Hydroxyapatite Composites Produced by Wet Chemical Precipitation. Acta Physica Polonica A, 2017, 131, 392-396.	0.5	5
111	Physical Characterization of Turbot (Psetta Maxima) Originated Natural Hydroxyapatite. Acta Physica Polonica A, 2017, 131, 397-400.	0.5	5
112	THE INFLUENCE OF FUNCTIONALIZING AGENTS ON THE PROPERTIES OF FIBREGLASS POLYMER COMPOSITES. , 2017, , .		0
113	Mechanical and tribological properties of nanofilled phenolic-matrix laminated composites. Materiali in Tehnologije, 2017, 51, 569-575.	0.5	4
114	Structural and characterisation analysis of zinc-substituted hydroxyapatite with wet chemical precipitation method. International Journal of Nano and Biomaterials, 2016, 6, 188.	0.1	2
115	Soft tissue engineering and microbial infections. , 2016, , 1-29.		5
116	New Collagen-Dextran-Zinc Oxide Composites for Wound Dressing. Journal of Nanomaterials, 2016, 2016, 1-7.	2.7	40
117	Advances in the field of soft tissue engineering. , 2016, , 355-386.		5
118	Nanotechnology in dentistry., 2016, , 187-210.		0
119	Fabrication of naturel pumice/hydroxyapatite composite for biomedical engineering. BioMedical Engineering OnLine, 2016, 15, 81.	2.7	16
120	High temperature superconducting materials based on Graphene / YBCO nanocomposite. Materials Today: Proceedings, 2016, 3, 2628-2634.	1.8	4
121	Can European Sea Bass (<i>Dicentrarchus labrax</i>) Scale Be a Good Candidate for Nano-Bioceramics Production?. Key Engineering Materials, 2016, 696, 60-65.	0.4	3
122	Influence of nanometric silicon carbide on phenolic resin composites properties. Bulletin of Materials Science, 2016, 39, 769-775.	1.7	25
123	New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid. International Journal of Pharmaceutics, 2016, 510, 501-507.	5.2	16
124	Synthesis and characterization of new composite materials based on poly(methacrylic acid) and hydroxyapatite with applications in dentistry. International Journal of Pharmaceutics, 2016, 510, 516-523.	5.2	30
125	Acrylic polymer influence on the structure and morphology of AgNPs obtained by chemical method for antimicrobial applications. Journal of Coatings Technology Research, 2016, 13, 53-61.	2.5	5
126	Extended release of vitamins from magnetite loaded polyanionic polymeric beads. International Journal of Pharmaceutics, 2016, 510, 457-464.	5.2	2

#	Article	IF	CITATIONS
127	Multi-walled carbon nanotubes effect in polypropylene nanocomposites. Materiali in Tehnologije, 2016, 50, .	0.5	1
128	Mechanical properties of polyamide/carbon-fiber-fabric composites. Materiali in Tehnologije, 2016, 50, 723-728.	0.5	4
129	Drug Delivery Systems for Dental Applications. Current Organic Chemistry, 2016, 21, 64-73.	1.6	9
130	Multifunctional Materials for Cancer Therapy: From Antitumoral Agents to Innovative Administration. Current Organic Chemistry, 2016, 20, 2934-2948.	1.6	7
131	Trends in Materials Science for Ligament Reconstruction. Current Stem Cell Research and Therapy, 2016, 12, 145-154.	1.3	2
132	Polymer Nanocomposites PE / PE-g-MA / EPDM / Nano ZnO Dynamically Vulcanized with Peroxide. , 2016, , .		1
133	Structural and characterisation analysis of zinc-substituted hydroxyapatite with wet chemical precipitation method. International Journal of Nano and Biomaterials, 2016, 6, 188.	0.1	0
134	The Effect of the Functionalizing Agent Type on Processability, Mechanical and Thermal Properties of Polypropylene-Based Composites. , 2016 , , .		0
135	Multifunctional materials such as MCM-41÷Fe3O4÷folic acid as drug delivery system. Romanian Journal of Morphology and Embryology, 2016, 57, 483-9.	0.8	3
136	Tetracycline Loaded Collagen/Hydroxyapatite Composite Materials for Biomedical Applications. Journal of Nanomaterials, 2015, 2015, 1-5.	2.7	8
137	Antitumoral materials with regenerative function obtained using a layer-by-layer technique. Drug Design, Development and Therapy, 2015, 9, 1269.	4.3	13
138	Composite Scaffolds Based on Silver Nanoparticles for Biomedical Applications. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	25
139	Editorial (Thematic Issue: Engineered Magnetic Core@Shell Structures). Current Pharmaceutical Design, 2015, 21, 5299-5300.	1.9	1
140	Fabrication of magnetite-based core–shell coated nanoparticles with antibacterial properties. Biofabrication, 2015, 7, 015014.	7.1	25
141	Fabrication and characterization of functionalized surfaces with 3-amino propyltrimethoxysilane films for anti-infective therapy applications. Applied Surface Science, 2015, 336, 401-406.	6.1	10
142	Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization. Applied Surface Science, 2015, 336, 407-412.	6.1	19
143	Design and characterization of polypropylene matrix/glass fibers composite materials. Journal of Applied Polymer Science, $2015, 132, .$	2.6	12
144	MAGNETIC CORE SHELL STRUCTURES: from 0D to 1D assembling. Current Pharmaceutical Design, 2015, 21, 5301-5311.	1.9	8

#	Article	IF	CITATIONS
145	SYNTHESIS AND APPLICATIONS OF Fe3O4/SiO2 CORE-SHELL MATERIALS. Current Pharmaceutical Design, 2015, 21, 5324-5335.	1.9	63
146	Antimicrobial Chitosan based Formulations with Impact on Different Biomedical Applications. Current Pharmaceutical Biotechnology, 2015, 16, 128-136.	1.6	41
147	Mesoporous Materials Used in Medicine and Environmental Applications. Current Topics in Medicinal Chemistry, 2015, 15, 1501-1515.	2.1	16
148	Molecular Mechanism and Targets of the Antimicrobial Activity of Metal Nanoparticles. Current Topics in Medicinal Chemistry, 2015, 15, 1583-1588.	2.1	27
149	Magnetite: From Synthesis to Applications. Current Topics in Medicinal Chemistry, 2015, 15, 1622-1640.	2.1	54
150	Incorporation of Silver Nanoparticles in Film Forming Materials for Long Term Antimicrobial Action. Current Nanoscience, 2015, 11, 760-769.	1.2	3
151	Biocompatible hydrodispersible magnetite nanoparticles used as antibiotic drug carriers. Romanian Journal of Morphology and Embryology, 2015, 56, 365-70.	0.8	7
152	Carboxymethyl-cellulose/Fe3O4 nanostructures for antimicrobial substances delivery. Bio-Medical Materials and Engineering, 2014, 24, 1639-1646.	0.6	9
153	Alginate and Sulfanilamide Based DDS with Antibacterial Activity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 92-96.	3.4	5
154	MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Applied Surface Science, 2014, 306, 16-22.	6.1	51
155	Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. International Journal of Pharmaceutics, 2014, 463, 161-169.	5.2	108
156	Montmorillonite–alginate nanocomposite as a drug delivery system – incorporation and in vitro release of irinotecan. International Journal of Pharmaceutics, 2014, 463, 184-192.	5.2	143
157	New silica nanostructure for the improved delivery of topical antibiotics used in the treatment of staphylococcal cutaneous infections. International Journal of Pharmaceutics, 2014, 463, 170-176.	5.2	21
158	Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication, 2014, 6, 035002.	7.1	45
159	Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Applied Surface Science, 2014, 302, 262-267.	6.1	64
160	Multifunctional materials for bone cancer treatment. International Journal of Nanomedicine, 2014, 9, 2713.	6.7	64
161	Nanostructured Biomaterials with Antimicrobial Properties. Current Medicinal Chemistry, 2014, 21, 3391-3404.	2.4	7
162	Silver Based Materials for Biomedical Applications. Current Organic Chemistry, 2014, 18, 173-184.	1.6	45

#	Article	IF	Citations
163	ZnO Applications and Challenges. Current Organic Chemistry, 2014, 18, 192-203.	1.6	62
164	Metal Oxide Nanoparticles: Potential Uses in Biomedical Applications. Current Proteomics, 2014, 11, 139-149.	0.3	30
165	In vitro activity of the new water-dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	47
166	Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics. International Journal of Pharmaceutics, 2013, 454, 233-240.	5.2	67
167	Antimicrobial coatings â€" obtaining and characterization. Bulletin of Materials Science, 2013, 36, 183-188.	1.7	8
168	Water dispersible magnetite nanoparticles influence the efficacy of antibiotics against planktonic and biofilm embedded Enterococcus faecalis cells. Anaerobe, 2013, 22, 14-19.	2.1	49
169	Synthesis, characterization and bioevaluation of irinotecan-collagen hybrid materials for biomedical applications as drug delivery systems in tumoral treatments. Open Chemistry, 2013, 11, 2134-2143.	1.9	7
170	Biohybrid Nanostructured Iron Oxide Nanoparticles and Satureja hortensis to Prevent Fungal Biofilm Development. International Journal of Molecular Sciences, 2013, 14, 18110-18123.	4.1	84
171	Collagen hydrolysate based collagen/hydroxyapatite composite materials. Journal of Molecular Structure, 2013, 1037, 154-159.	3.6	43
172	Caprolactam-silica network, a strong potentiator of the antimicrobial activity of kanamycin against Gram-positive and Gram-negative bacterial strains. International Journal of Pharmaceutics, 2013, 446, 63-69.	5.2	13
173	Fabrication, characterization and in vitro profile based interaction with eukaryotic and prokaryotic cells of alginate–chitosan–silica biocomposite. International Journal of Pharmaceutics, 2013, 441, 555-561.	5.2	32
174	Collagen-hydroxyapatite/Cisplatin Drug Delivery Systems for Locoregional Treatment of Bone Cancer. Technology in Cancer Research and Treatment, 2013, 12, 275-284.	1.9	65
175	Biocompatible Magnetic Hollow Silica Microspheres for Drug Delivery. Current Organic Chemistry, 2013, 17, 1029-1033.	1.6	17
176	Prosthetic Devices with Functionalized Anti-biofilm Surface Based NanoAg@C18. Current Organic Chemistry, 2013, 17, 105-112.	1.6	4
177	Wound Dressing Based Collagen Biomaterials Containing Usnic Acid as Quorum Sensing Inhibitor Agent: Synthesis, Characterization and Bioevaluation. Current Organic Chemistry, 2013, 17, 125-131.	1.6	8
178	Antitumor Activity of Magnetite Nanoparticles: Influence of Hydrocarbonated Chain of Saturated Aliphatic Monocarboxylic Acids. Current Organic Chemistry, 2013, 17, 831-840.	1.6	6
179	Synthesis and Characterization of Magnetite-Polysulfone Micro- and Nanobeads with Improved Chemical Stability in Acidic Media. Current Nanoscience, 2013, 9, 271-277.	1.2	7
180	Synthesis and Characterization of Mesoporous Magnetite Based Nanoparticles. Current Nanoscience, 2012, 8, 875-879.	1.2	7

#	Article	IF	CITATIONS
181	Mimicking the morphology of long bone. Open Chemistry, 2012, 10, 1949-1953.	1.9	5
182	Synthesis, characterization and in vitro assessment of the magnetic chitosan–carboxymethylcellulose biocomposite interactions with the prokaryotic and eukaryotic cells. International Journal of Pharmaceutics, 2012, 436, 771-777.	5.2	53
183	Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale Research Letters, 2012, 7, 501.	5.7	51
184	Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development. Nanoscale Research Letters, 2012, 7, 690.	5.7	50
185	Synthesis and characterization of hybrid PVA/Al2O3 thin film. Materials Letters, 2012, 74, 132-136.	2.6	24
186	Hybrid materials based on montmorillonite and citostatic drugs: Preparation and characterization. Applied Clay Science, 2011, 52, 62-68.	5.2	61
187	New approaches in layer by layer synthesis of collagen/hydroxyapatite composite materials. Open Chemistry, 2011, 9, 283-289.	1.9	13
188	Collagen/hydroxyapatite composite materials with desired ceramic properties. Journal of Electron Microscopy, 2011, 60, 253-259.	0.9	17
189	Synthesis and characterization of COLL–PVA/HA hybrid materials with stratified morphology. Colloids and Surfaces B: Biointerfaces, 2010, 81, 614-619.	5.0	36
190	Synthesis and characterization of collagen/hydroxyapatite: magnetite composite material for bone cancer treatment. Journal of Materials Science: Materials in Medicine, 2010, 21, 2237-2242.	3.6	93
191	The influence of collagen support and ionic species on the morphology of collagen/hydroxyapatite composite materials. Materials Characterization, 2010, 61, 402-407.	4.4	33
192	Collagen/hydroxyapatite composite obtained by electric field orientation. Materials Letters, 2010, 64, 541-544.	2.6	34
193	Self-assembled collagen/hydroxyapatite composite materials. Chemical Engineering Journal, 2010, 160, 794-800.	12.7	86
194	Synthesis and Characterization of Composites from Layered Silicates and Homo- and Copolymers of 2-Hydroxyethyl Methacrylate and P-Chloromethyl Styrene Obtained by In Situ Radical (Co)polymerization. Molecular Crystals and Liquid Crystals, 2010, 521, 204-213.	0.9	0
195	Layer by layer deposition of hydroxyapatite onto the collagen matrix. Materials Science and Engineering C, 2009, 29, 2217-2220.	7.3	23
196	Advances in Cancer Treatment: Role of Nanoparticles. , 0, , .		5
197	The use of microwaves in the process of obtaining nanopowders. Journal of Microwave Power and Electromagnetic Energy, 0, , 1-20.	0.8	1
198	Collagen/Hydroxyapatite Composite Supports for Bone Tissue Engineering., 0,,.		1

#	Article	IF	CITATIONS
199	Advances in Collagen/Hydroxyapatite Composite Materials. , 0, , .		13
200	MCM41/Fe3O4/EDTA Materials from Removal Different Cation from Waste Water., 0,,.		0
201	Design of TiOxNy for Developing Layered Stent Technology. , 0, , .		0
202	Harnessing PET Wastes by Compounding with Functionalized Flax. , 0, , .		0
203	Design of TiOxNy for Coating Technology. , 0, , .		0
204	Collagen/Hydroxyapatite Bio-Compatible Scaffolds Obtained Through 3D Printing. , 0, , .		0
205	Polypropylene/Polyamide/Carbon Fibres Nanocomposites: Processing – Morphology – Property Relationships. , 0, , .		O
206	Titanium Oxynitride Coatings Deposited By Magnetron Sputtering For Improvement Of Cardiovascular Stent Design. , 0, , .		2
207	Smart Alginate-Based Magnetic Platforms for Drug Delivery. , 0, , .		0
208	Drug Delivery Platforms for Cardiovascular Applications Based on Alginate-Based Hollow Structures. , 0, , .		0