
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3246285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of Mouse Type I NKT (iNKT) Cells by Flow Cytometry. Methods in Molecular Biology, 2021, 2388, 87-99.	0.9	0
2	Making a Cold Tumor Hot: The Role of Vaccines in the Treatment of Glioblastoma. Frontiers in Oncology, 2021, 11, 672508.	2.8	51
3	The Role of NKT Cells in Glioblastoma. Cells, 2021, 10, 1641.	4.1	10
4	Rethinking immunotherapy in meningiomas. Neuro-Oncology, 2021, 23, 1812-1813.	1.2	4
5	Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.	1.2	59
6	Another layer of immune complication in glioblastoma: inducible co-stimulator and its ligand. Neuro-Oncology, 2020, 22, 305-306.	1.2	1
7	Complementary approaches to study NKT cells in cancer. Methods in Enzymology, 2020, 631, 371-389.	1.0	1
8	Induction of Immune Response against Metastatic Tumors via Vaccination of Mannanâ€BAM, TLR Ligands, and Antiâ€CD40 Antibody (MBTA). Advanced Therapeutics, 2020, 3, 2000044.	3.2	11
9	MerTK inhibition decreases immune suppressive glioblastoma-associated macrophages and neoangiogenesis in glioblastoma microenvironment. Neuro-Oncology Advances, 2020, 2, vdaa065.	0.7	16
10	Case Report: Single-Cell Transcriptomic Analysis of an Anaplastic Oligodendroglioma Post Immunotherapy. Frontiers in Oncology, 2020, 10, 601452.	2.8	1
11	Intratumorally delivered formulation, INT230-6, containing potent anticancer agents induces protective T cell immunity and memory. OncoImmunology, 2019, 8, e1625687.	4.6	9
12	Structure-Function Implications of the Ability of Monoclonal Antibodies Against α-Galactosylceramide-CD1d Complex to Recognize β-Mannosylceramide Presentation by CD1d. Frontiers in Immunology, 2019, 10, 2355.	4.8	5
13	Altered Lipid Tumor Environment and Its Potential Effects on NKT Cell Function in Tumor Immunity. Frontiers in Immunology, 2019, 10, 2187.	4.8	29
14	IL13Rα2 expression identifies tissueâ€resident ILâ€22â€producing PLZF ⁺ innate TÂcells in the huma liver. European Journal of Immunology, 2018, 48, 1329-1335.	n 2.9	13
15	Differential Regulation of T-cell mediated anti-tumor memory and cross-protection against the same tumor in lungs versus skin. Oncolmmunology, 2018, 7, e1439305.	4.6	6
16	Cancer vaccines: translation from mice to human clinical trials. Current Opinion in Immunology, 2018, 51, 111-122.	5.5	39
17	Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunology, Immunotherapy, 2018, 67, 1863-1869.	4.2	38
18	Tissue-Specific Roles of NKT Cells in Tumor Immunity. Frontiers in Immunology, 2018, 9, 1838.	4.8	87

#	Article	IF	CITATIONS
19	Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 2018, 360, .	12.6	931
20	Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity. Frontiers in Immunology, 2018, 9, 314.	4.8	15
21	Blockade of only TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy. Oncolmmunology, 2017, 6, e1308616.	4.6	71
22	NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature, 2016, 531, 253-257.	27.8	552
23	NKT Cells in Tumor Immunity. , 2016, , 460-469.		2
24	Strategies for Improving Vaccines to Elicit T Cells to Treat Cancer. Cancer Drug Discovery and Development, 2015, , 29-52.	0.4	1
25	NKT Cell Networks in the Regulation of Tumor Immunity. Frontiers in Immunology, 2014, 5, 543.	4.8	110
26	CD47 in the Tumor Microenvironment Limits Cooperation between Antitumor T-cell Immunity and Radiotherapy. Cancer Research, 2014, 74, 6771-6783.	0.9	179
27	The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunology, Immunotherapy, 2014, 63, 199-213.	4.2	71
28	Delicate Balance among Three Types of T Cells in Concurrent Regulation of Tumor Immunity. Cancer Research, 2013, 73, 1514-1523.	0.9	59
29	Balance is a key for happiness. Oncolmmunology, 2013, 2, e24211.	4.6	6
30	β-Mannosylceramide Activates Type I Natural Killer T Cells to Induce Tumor Immunity without Inducing Long-Term Functional Anergy. Clinical Cancer Research, 2013, 19, 4404-4411.	7.0	15
31	Cancer vaccines: 21st century approaches to harnessing an ancient modality to fight cancer. Expert Review of Vaccines, 2013, 12, 1115-1118.	4.4	7
32	Immune Regulation of Tumor Immunity by NKT Cells. , 2012, , 55-70.		1
33	Strategies to Use Immune Modulators in Therapeutic Vaccines Against Cancer. Seminars in Oncology, 2012, 39, 348-357.	2.2	36
34	The Role of NKT Cells in the Immune Regulation of Neoplastic Disease. , 2012, , 7-21.		2
35	Mouse and human iNKT cell agonist \hat{l}^2 -mannosylceramide reveals a distinct mechanism of tumor immunity. Journal of Clinical Investigation, 2011, 121, 683-694.	8.2	41
36	A Novel Combination Immunotherapy for Cancer by IL-13Rα2–Targeted DNA Vaccine and Immunotoxin in Murine Tumor Models. Journal of Immunology, 2011, 187, 4935-4946.	0.8	30

#	Article	IF	CITATIONS
37	Blockade of TCFâ€Î² enhances tumor vaccine efficacy mediated by CD8 ⁺ T cells. International Journal of Cancer, 2010, 126, 1666-1674.	5.1	72
38	Synergistic Enhancement of CD8+ T Cell–Mediated Tumor Vaccine Efficacy by an Anti–Transforming Growth Factor-β Monoclonal Antibody. Clinical Cancer Research, 2009, 15, 6560-6569.	7.0	109
39	The Contrasting Roles of NKT Cells in Tumor Immunity. Current Molecular Medicine, 2009, 9, 667-672.	1.3	90
40	Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunology, Immunotherapy, 2008, 57, 907-912.	4.2	29
41	A novel immunoregulatory axis of NKT cell subsets regulating tumor immunity. Cancer Immunology, Immunotherapy, 2008, 57, 1679-1683.	4.2	50
42	Regulation of tumor immunity: the role of NKT cells. Expert Opinion on Biological Therapy, 2008, 8, 725-734.	3.1	26
43	Chapter 8 The Role of NKT Cells in Tumor Immunity. Advances in Cancer Research, 2008, 101, 277-348.	5.0	274
44	Restoration of Tumor Immunosurveillance via Targeting of Interleukin-13 Receptor-α2. Cancer Research, 2008, 68, 3467-3475.	0.9	81
45	NKT Cells in Tumor Immunity: Opposing Subsets Define a New Immunoregulatory Axis. Journal of Immunology, 2008, 180, 3627-3635.	0.8	115
46	An Anti–Transforming Growth Factor β Antibody Suppresses Metastasis via Cooperative Effects on Multiple Cell Compartments. Cancer Research, 2008, 68, 3835-3843.	0.9	203
47	Transforming Growth Factor Î ² Subverts the Immune System into Directly Promoting Tumor Growth through Interleukin-17. Cancer Research, 2008, 68, 3915-3923.	0.9	233
48	Cross-Regulation between Type I and Type II NKT Cells in Regulating Tumor Immunity: A New Immunoregulatory Axis. Journal of Immunology, 2007, 179, 5126-5136.	0.8	187
49	NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends in Immunology, 2007, 28, 491-496.	6.8	134
50	CD1d-Restricted Natural Killer T Cells Can Down-regulate Tumor Immunosurveillance Independent of Interleukin-4 Receptor-Signal Transducer and Activator of Transcription 6 or Transforming Growth Factor-β. Cancer Research, 2006, 66, 3869-3875.	0.9	54
51	Unmasking immunosurveillance against a syngeneic colon cancer by elimination of CD4+ NKT regulatory cells and IL-13. International Journal of Cancer, 2005, 114, 80-87.	5.1	88
52	A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. Journal of Experimental Medicine, 2005, 202, 1627-1633.	8.5	262
53	Peptide Vaccines Against Cancer. Cancer Treatment and Research, 2005, 123, 115-136.	0.5	15
54	Immunoregulatory T cells in tumor immunity. Current Opinion in Immunology, 2004, 16, 157-162.	5.5	237

#	Article	lF	CITATIONS
55	Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunology, Immunotherapy, 2004, 53, 79-85.	4.2	181
56	Progress on new vaccine strategies against chronic viral infections. Journal of Clinical Investigation, 2004, 114, 450-462.	8.2	93
57	Progress on new vaccine strategies for the immunotherapy and prevention of cancer. Journal of Clinical Investigation, 2004, 113, 1515-1525.	8.2	175
58	Progress on new vaccine strategies against chronic viral infections. Journal of Clinical Investigation, 2004, 114, 450-462.	8.2	68
59	Transforming Growth Factor-β Production and Myeloid Cells Are an Effector Mechanism through Which CD1d-restricted T Cells Block Cytotoxic T Lymphocyte–mediated Tumor Immunosurveillance. Journal of Experimental Medicine, 2003, 198, 1741-1752.	8.5	508
60	Resistance to Metastatic Disease in STAT6-Deficient Mice Requires Hemopoietic and Nonhemopoietic Cells and Is IFN-γ Dependent. Journal of Immunology, 2002, 169, 5796-5804.	0.8	109
61	A push-pull approach to maximize vaccine efficacy: Abrogating suppression with an IL-13 inhibitor while augmenting help with granulocyte/macrophage colony-stimulating factor and CD40L. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13020-13025.	7.1	89
62	NKT cell–mediated repression of tumor immunosurveillance by IL-13 and the IL-4R–STAT6 pathway. Nature Immunology, 2000, 1, 515-520.	14.5	639