Zhengping Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3245713/publications.pdf Version: 2024-02-01

		22153	39675
236	11,162	59	94
papers	citations	h-index	g-index
236	236	236	6529
all docs	docs citations	times ranked	citing authors
236 all docs	236 docs citations	236 times ranked	6529 citing autho

#	Article	IF	CITATIONS
1	Fabrication and properties of <scp>PEI</scp> / <scp>APP layerâ€byâ€layer</scp> coated ramie fabric combined with lowâ€temperature plasma treatment. Fire and Materials, 2022, 46, 117-129.	2.0	1
2	Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide. Chemical Engineering Journal, 2022, 427, 131578.	12.7	153
3	Effect of Plasma Pretreatment on Flame Retardant Modification of Ramie Fabric via Layer-by-layer Assembly. Journal of Natural Fibers, 2022, 19, 9569-9579.	3.1	1
4	Sulfonated Block Ionomers Enable Transparent, Fire-Resistant, Tough yet Strong Polycarbonate. Chemical Engineering Journal, 2022, 433, 133264.	12.7	31
5	Interface nanoengineering of a core-shell structured biobased fire retardant for fire-retarding polylactide with enhanced toughness and UV protection. Journal of Cleaner Production, 2022, 336, 130372.	9.3	34
6	A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins. Composites Part B: Engineering, 2022, 234, 109701.	12.0	140
7	Governing effects of melt viscosity on fire performances of polylactide and its fire-retardant systems. IScience, 2022, 25, 103950.	4.1	18
8	Flame retardant epoxy resin toughened and strengthened by a reactive compatibilizer. Polymer, 2022, 248, 124798.	3.8	18
9	Green and Facile Synthesis of Bio-Based, Flame-Retardant, Latent Imidazole Curing Agent for Single-Component Epoxy Resin. ACS Applied Polymer Materials, 2022, 4, 3564-3574.	4.4	76
10	Flame retardancy and chemical degradation of epoxy containing phenylphosphonate group under mild conditions. Composites Part B: Engineering, 2022, 239, 109967.	12.0	21
11	Strengthening and flame retarding effect of bamboo fiber modified by silica aerogel on polylactic acid composites. Construction and Building Materials, 2022, 340, 127696.	7.2	15
12	Flame retardant bamboo fiber reinforced polylactic acid composites regulated by interfacial phosphorus-silicon aerogel. Polymer, 2022, 252, 124961.	3.8	13
13	Recent advances in fireâ€retardant carbonâ€based polymeric nanocomposites through fighting free radicals. SusMat, 2022, 2, 411-434.	14.9	37
14	A phosphorus/silicon-based, hyperbranched polymer for high-performance, fire-safe, transparent epoxy resins. Polymer Degradation and Stability, 2022, 203, 110065.	5.8	32
15	Thermal stability and oxygen resistance of polypropylene composites with fullerene/montmorillonite hybrid fillers. Journal of Thermal Analysis and Calorimetry, 2021, 146, 1383-1392.	3.6	9
16	Morphology and mechanical behaviors of rigid organic particles reinforced polycarbonate. Journal of Applied Polymer Science, 2021, 138, 49762.	2.6	10
17	Water governs the mechanical properties of poly(vinyl alcohol). Polymer, 2021, 213, 123330.	3.8	37
18	A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate. Composites Part B: Engineering, 2021, 207, 108601.	12.0	170

#	Article	IF	CITATIONS
19	Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Progress in Polymer Science, 2021, 114, 101366.	24.7	421
20	Transparent, highly thermostable and flame retardant polycarbonate enabled by rod-like phosphorous-containing metal complex aggregates. Chemical Engineering Journal, 2021, 409, 128223.	12.7	109
21	A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid). Chemical Engineering Journal, 2021, 411, 128493.	12.7	134
22	Fabrication and Mechanism Study of Cerium-Based P, N-Containing Complexes for Reducing Fire Hazards of Polycarbonate with Superior Thermostability and Toughness. ACS Applied Materials & Interfaces, 2021, 13, 30061-30075.	8.0	36
23	Synthesis, Curing, and Thermal Stability of Low-Temperature-Cured Benzoxazine Resins Based on Natural Renewable Resources. ACS Applied Polymer Materials, 2021, 3, 3392-3401.	4.4	27
24	Highly fibrillated and intrinsically flame-retardant nanofibrillated cellulose for transparent mineral filler-free fire-protective coatings. Chemical Engineering Journal, 2021, 419, 129440.	12.7	32
25	A Novel Synergistic Flame Retardant of Hexaphenoxycyclotriphosphazene for Epoxy Resin. Polymers, 2021, 13, 3648.	4.5	12
26	A novel hyperbranched phosphorus-boron polymer for transparent, flame-retardant, smoke-suppressive, robust yet tough epoxy resins. Composites Part B: Engineering, 2021, 227, 109395.	12.0	66
27	Influence of fullerenes on the thermal and flameâ€retardant properties of polymeric materials. Journal of Applied Polymer Science, 2020, 137, 47538.	2.6	32
28	Fabrication of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-decorated fullerene to improve the anti-oxidative and flame-retardant properties of polypropylene. Composites Part B: Engineering, 2020, 183, 107672.	12.0	33
29	A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Composites Communications, 2020, 17, 104-108.	6.3	155
30	Fullerene-induced crystallization toward improved mechanical properties of solvent casting polycarbonate films. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	4
31	Core–Shell Bioderived Flame Retardants Based on Chitosan/Alginate Coated Ammonia Polyphosphate for Enhancing Flame Retardancy of Polylactic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 6402-6412.	6.7	174
32	Fabrication of fullerene decorated by iron compound and its effect on the thermal stability and flammability for highâ€density polyethylene. Fire and Materials, 2020, 44, 506-515.	2.0	5
33	Effect of acetylacetone metal salts on curing mechanism and thermal stability of polybenzoxazine. High Performance Polymers, 2020, 32, 953-962.	1.8	2
34	Deposition growth of Zr-based MOFs on cerium phenylphosphonate lamella towards enhanced thermal stability and fire safety of polycarbonate. Composites Part B: Engineering, 2020, 197, 108064.	12.0	53
35	Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science, 2020, 114, 100687.	32.8	415
36	Novel full bio-based phloroglucinol benzoxazine resin: Synthesis, curing reaction and thermal stability. Polymer, 2020, 200, 122534.	3.8	18

#	Article	IF	CITATIONS
37	A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Composites Part B: Engineering, 2019, 176, 107198.	12.0	50
38	Application of waste silicon rubber composite treated by N 2 plasma in the flameâ€retardant polypropylene. Journal of Applied Polymer Science, 2019, 136, 48187.	2.6	3
39	Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Composites Part B: Engineering, 2019, 165, 406-416.	12.0	308
40	Encouraging mechanical reinforcement in polycarbonate nanocomposite films via incorporation of melt blending-prepared polycarbonate-graft-graphene oxide. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	7
41	Synthesis of decorated graphene with P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid. Composites Part B: Engineering, 2019, 170, 41-50.	12.0	123
42	Green and Scalable Fabrication of Core–Shell Biobased Flame Retardants for Reducing Flammability of Polylactic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 8954-8963.	6.7	192
43	Synergistic flame retardant mechanism of lanthanum phenylphosphonate and decabromodiphenyl oxide in polycarbonate. Polymer Composites, 2019, 40, 986-999.	4.6	21
44	Combination of a bio-based polyphosphonate and modified graphene oxide toward superior flame retardant polylactic acid. RSC Advances, 2018, 8, 4304-4313.	3.6	26
45	Synthesis of a novel polyphosphate and its application with APP in flame retardant PLA. RSC Advances, 2018, 8, 4483-4493.	3.6	40
46	Outlook on ecologically improved composites for aviation interior and secondary structures. CEAS Aeronautical Journal, 2018, 9, 533-543.	1.7	33
47	Improved thermal stability of polyethylene with rare earth trifluoromethanesulfonate. Composites Communications, 2018, 8, 19-23.	6.3	7
48	Fabrication of flame retardant benzoxazine semiâ€biocomposites reinforced by ramie fabrics with bioâ€based flame retardant coating. Polymer Composites, 2018, 39, E480.	4.6	22
49	Synthesis of phospholipidated βâ€cyclodextrin and its application for flameâ€retardant poly(lactic acid) with ammonium polyphosphate. Journal of Applied Polymer Science, 2018, 135, 46054.	2.6	27
50	Bioinspired Design of Strong, Tough, and Thermally Stable Polymeric Materials <i>via</i> Nanoconfinement. ACS Nano, 2018, 12, 9266-9278.	14.6	157
51	A facile way to prepare phosphorus-nitrogen-functionalized graphene oxide for enhancing the flame retardancy of epoxy resin. Composites Communications, 2018, 10, 97-102.	6.3	115
52	Application of poly(diphenolic acidâ€phenyl phosphate)â€based layer by layer nanocoating in flame retardant ramie fabrics. Journal of Applied Polymer Science, 2017, 134, .	2.6	16
53	Smoke suppression of graphene platelets fabricated by Friedel–Crafts reaction in brominated flame-retarded PS. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1719-1730.	3.6	9
54	The flame retardant and smoke suppression effect of fullerene by trapping radicals in decabromodiphenyl oxide/Sb ₂ O ₃ flameâ€retarded high density polyethylene. Fire and Materials, 2017, 41, 916-924.	2.0	18

#	Article	IF	CITATIONS
55	Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: A novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid. Polymer, 2017, 108, 361-371.	3.8	63
56	Mechanism of enhancement of intumescent fire retardancy by metal acetates in polypropylene. Polymer Degradation and Stability, 2017, 136, 139-145.	5.8	43
57	Construction of multilayer coatings for flame retardancy of ramie fabric using layerâ€byâ€layer assembly. Journal of Applied Polymer Science, 2017, 134, 45556.	2.6	23
58	Improving the flameâ€retardant efficiency of aluminum hydroxide with fullerene for highâ€density polyethylene. Journal of Applied Polymer Science, 2017, 134, .	2.6	27
59	Diphenolic acid based biphosphate on the properties of polylactic acid: Synthesis, fire behavior and flame retardant mechanism. Polymer, 2017, 108, 29-37.	3.8	53
60	Synthesis of an intrinsically flame retardant bio-based benzoxazine resin. Polymer, 2016, 97, 418-427.	3.8	62
61	Synthesis of a highly efficient phosphorus-containing flame retardant utilizing plant-derived diphenolic acids and its application in polylactic acid. RSC Advances, 2016, 6, 49019-49027.	3.6	55
62	Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Composites Part A: Applied Science and Manufacturing, 2016, 89, 26-32.	7.6	103
63	Improving flame-retardant efficiency by incorporation of fullerene in styrene–butadiene–styrene block copolymer/aluminum hydroxide composites. Journal of Thermal Analysis and Calorimetry, 2016, 125, 199-204.	3.6	16
64	Fabrication of fullerene-decorated graphene oxide and its influence on flame retardancy of high density polyethylene. Composites Science and Technology, 2016, 129, 123-129.	7.8	25
65	Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO. RSC Advances, 2016, 6, 5288-5295.	3.6	81
66	The Effect of a Novel Intumescent Flame Retardant-Functionalized Montmorillonite on the Thermal Stability and Flammability of Eva. Polymers and Polymer Composites, 2015, 23, 345-350.	1.9	8
67	Effect of iron acetylacetonate on the crosslink structure, thermal and flammability properties of novel aromatic diamine-based benzoxazines containing cyano group. RSC Advances, 2015, 5, 18538-18545.	3.6	11
68	Flame retarding and reinforcing modification of ramie/polybenzoxazine composites by surface treatment of ramie fabric. Composites Science and Technology, 2015, 121, 82-88.	7.8	47
69	Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound. Thermochimica Acta, 2015, 612, 55-62.	2.7	14
70	Combination of montmorillonite and a Schiff-base polyphosphate ester to improve the flame retardancy of ethylene-vinyl acetate copolymer. Journal of Polymer Engineering, 2015, 35, 443-449.	1.4	5
71	Synthesis of Zinc Phosphonated Poly(ethylene imine) and Its Fire-Retardant Effect in Low-Density Polyethylene. Industrial & Engineering Chemistry Research, 2015, 54, 3247-3256.	3.7	36
72	Flammability characterization and effects of magnesium oxide in halogen-free flame-retardant EVA blends. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1683-1690.	3.8	20

#	Article	IF	CITATIONS
73	On the flameproof treatment of ramie fabrics using a spray-assisted layer-by-layer technique. Polymer Degradation and Stability, 2015, 121, 11-17.	5.8	24
74	Synthesis of zinc N-morpholinomethylphosphonic acid and its application in high density polyethylene. Fire Safety Journal, 2015, 71, 1-8.	3.1	4
75	Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of highâ€density polyethylene flameâ€retarded by brominated polystyrene. Journal of Applied Polymer Science, 2014, 131, .	2.6	31
76	Compatibilization of polyamide 6/poly(2,6-dimethyl-1,4-phenylene oxide) blends by poly(styrene-co-maleic anhydride). Journal of Polymer Engineering, 2014, 34, 193-199.	1.4	12
77	Flame-Retarding Modification for Ramie/Benzoxazine Laminates and the Mechanism Study. Industrial & Engineering Chemistry Research, 2014, 53, 19961-19969.	3.7	23
78	Effect of Friedel–Crafts reaction on the thermal stability and flammability of highâ€density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polymer International, 2014, 63, 1835-1841.	3.1	26
79	Chitosan/Phytic Acid Polyelectrolyte Complex: A Green and Renewable Intumescent Flame Retardant System for Ethylene–Vinyl Acetate Copolymer. Industrial & Engineering Chemistry Research, 2014, 53, 19199-19207.	3.7	142
80	Superhydrophobic and conductive properties of carbon nanotubes/polybenzoxazine nanocomposites coated ramie fabric prepared by solution-immersion process. Applied Surface Science, 2014, 309, 218-224.	6.1	37
81	The effect of fullerene on the resistance to thermal degradation of polymers with different degradation processes. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1235-1244.	3.6	23
82	Flame-retardant coating by alternate assembly of poly(vinylphosphonic acid) and polyethylenimine for ramie fabrics. Chinese Journal of Polymer Science (English Edition), 2014, 32, 305-314.	3.8	13
83	Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Composites Science and Technology, 2014, 90, 40-47.	7.8	208
84	Synthesis of cerium phenylphosphonate and its synergistic flame retardant effect with decabromodiphenyl oxide in glassâ€fiber reinforced poly(ethylene terephthalate). Polymer Composites, 2014, 35, 539-547.	4.6	33
85	Carbon nanotube bridged cerium phenylphosphonate hybrids, fabrication and their effects on the thermal stability and flame retardancy of the HDPE/BFR composite. Journal of Materials Chemistry A, 2014, 2, 2999.	10.3	59
86	A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene. RSC Advances, 2014, 4, 48285-48292.	3.6	81
87	Effect of graphene nanosheets and layered double hydroxides on the flame retardancy and thermal degradation of epoxy resin. RSC Advances, 2014, 4, 18652-18659.	3.6	60
88	Effect of a Lewis Acid Catalyst on the Performance of HDPE/BFR/GNPs Composites. Industrial & Engineering Chemistry Research, 2014, 53, 4711-4717.	3.7	14
89	The study of fibre/matrix bond strength in short hemp polypropylene composites from dynamic mechanical analysis. Composites Part B: Engineering, 2014, 62, 19-28.	12.0	124
90	Combination of doubleâ€modified clay and polypropyleneâ€ <i>graft</i> â€maleic anhydride for the simultaneously improved thermal and mechanical properties of polypropylene. Journal of Applied Polymer Science, 2013, 128, 283-291.	2.6	16

#	ARTICLE	IF	CITATIONS
91	Influence of fullerene on the kinetics of thermal and thermo-oxidative degradation of high-density polyethylene by capturing free radicals. Journal of Thermal Analysis and Calorimetry, 2013, 114, 1287-1294.	3.6	20
92	Synthesis of aromatic diamine-based benzoxazines and effect of their backbone structure on thermal and flammability properties of polymers. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1359-1371.	3.8	15
93	Dynamics of α and α′ relaxation in layered silicate/polystyrene nanocomposites studied by anelastic spectroscopy. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1334-1342.	3.8	2
94	Modification of ramie fabric with a metalâ€ionâ€doped flameâ€retardant coating. Journal of Applied Polymer Science, 2013, 129, 2986-2997.	2.6	28
95	Effects of layered lanthanum phenylphosphonate on flame retardancy of glass-fiber reinforced poly(ethylene terephthalate) nanocomposites. Applied Clay Science, 2013, 77-78, 10-17.	5.2	37
96	Promoting dispersion of graphene nanoplatelets in polyethylene and chlorinated polyethylene by Friedel‰Crafts reaction. Composites Science and Technology, 2013, 86, 157-163.	7.8	15
97	Synthesis and performance of three flame retardant additives containing diethyl phosphite/phenyl phosphonic moieties. Fire Safety Journal, 2013, 61, 185-192.	3.1	21
98	Improving the flame retardancy and mechanical properties of high-density polyethylene-g-maleic anhydride with a novel organic metal phosphonate. Journal of Analytical and Applied Pyrolysis, 2013, 102, 154-160.	5.5	16
99	Thermal and thermo-oxidative degradation of high density polyethylene/fullerene composites. Polymer Degradation and Stability, 2013, 98, 1953-1962.	5.8	40
100	Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale, 2013, 5, 3013.	5.6	127
101	Synthesis of Cerium N-Morpholinomethylphosphonic Acid and Its Flame Retardant Application in High Density Polyethylene. Industrial & Engineering Chemistry Research, 2013, 52, 5334-5340.	3.7	15
102	Controlled Formation of Self-Extinguishing Intumescent Coating on Ramie Fabric via Layer-by-Layer Assembly. Industrial & Engineering Chemistry Research, 2013, 52, 6138-6146.	3.7	77
103	Synthesis of novel poly(aminophosphonate ester)s flame retardants and their applications in EVA copolymer. Polymers for Advanced Technologies, 2013, 24, 197-203.	3.2	12
104	Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS. Journal of Applied Polymer Science, 2013, 128, 2424-2432.	2.6	61
105	Confinement of C60nanoparticles on the dynamics of polystyrene studied by anelastic spectroscopy and rheometrics. , 2013, , .		0
106	Thermal Stability and Rheological Behaviors of High-Density Polyethylene/Fullerene Nanocomposites. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	22
107	Synthesis of Three Novel Intumescent Flame Retardants Having Azomethine Linkages and Their Applications in EVA Copolymer. Industrial & Engineering Chemistry Research, 2012, 51, 11059-11065.	3.7	31
108	Functionalization of polyhedral oligomeric silsesquioxanes with bis(hydroxyethyl) ester and preparation of the corresponding degradable nanohybrids. Chinese Chemical Letters, 2012, 23, 1083-1086.	9.0	1

#	Article	IF	CITATIONS
109	Synthesis and carbonization chemistry of a phosphorous–nitrogen based intumescent flame retardant. Thermochimica Acta, 2012, 543, 130-136.	2.7	56
110	Cross-linking of a novel reactive polymeric intumescent flame retardant to ABS copolymer and its flame retardancy properties. Polymer Degradation and Stability, 2012, 97, 1596-1605.	5.8	34
111	Effect of Lignin Incorporation and Reactive Compatibilization on the Morphological, Rheological, and Mechanical Properties of ABS Resin. Journal of Macromolecular Science - Physics, 2012, 51, 720-735.	1.0	36
112	DESIGN, SYNTHESIS, AND APPLICATION OF NOVEL FLAME RETARDANTS DERIVED FROM BIOMASS. BioResources, 2012, 7, .	1.0	10
113	Relationship between the distribution of organoâ€montmorillonite and the flammability of flame retardant polypropylene. Polymer Engineering and Science, 2012, 52, 390-398.	3.1	21
114	Preparation, characterization, and properties of novel biodegradable aliphatic–aromatic copolyester nanohybrids with polyhedral oligomeric silsesquioxanes moieties. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1374-1382.	2.1	1
115	Physical wrapping of reduced graphene oxide sheets by polyethylene wax and its modification on the mechanical properties of polyethylene. Journal of Applied Polymer Science, 2012, 126, 1546-1555.	2.6	12
116	Permeability, Viscoelasticity, and Flammability Performances and Their Relationship to Polymer Nanocomposites. Industrial & Engineering Chemistry Research, 2012, 51, 7255-7263.	3.7	82
117	Percolation-dominated superhydrophobicity and conductivity for nanocomposite coatings from the mixtures of a commercial aqueous silica sol and functionalized carbon nanotubes. Journal of Colloid and Interface Science, 2012, 367, 225-233.	9.4	15
118	Polypropylene nanocomposites based on C60-decorated carbon nanotubes: thermal properties, flammability, and mechanical properties. Journal of Materials Chemistry, 2011, 21, 7782.	6.7	80
119	Flame Retardant ABS with a Novel Polyphosphate Derived from Biomass. Advanced Materials Research, 2011, 284-286, 187-192.	0.3	2
120	Properties of the glass fibre/interpenetrating polymer network composites based on novel naphthalene-contained bismaleimide and cyanate resin. International Journal of Materials and Product Technology, 2011, 42, 156.	0.2	0
121	Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polymer Degradation and Stability, 2011, 96, 1725-1731.	5.8	88
122	Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 2011, 52, 4001-4010.	3.8	552
123	A novel zinc chelate complex containing both phosphorus and nitrogen for improving the flame retardancy of low density polyethylene. Journal of Analytical and Applied Pyrolysis, 2011, 92, 339-346.	5.5	41
124	Improving tribological properties of bismaleimide nanocomposite filled with carbon nanotubes treated by atmospheric pressure filamentary dielectric barrier discharge. Composites Part B: Engineering, 2011, 42, 2117-2122.	12.0	6
125	Biodegradable aliphatic/aromatic copoly(ester-ether)s: the effect of poly(ethylene glycol) on physical properties and degradation behavior. Journal of Polymer Research, 2011, 18, 187-196.	2.4	27
126	Lubrication Effect of the Paraffin Oil Filled with Functionalized Multiwalled Carbon Nanotubes for Bismaleimide Resin. Tribology Letters, 2011, 42, 59-65.	2.6	57

#	Article	IF	CITATIONS
127	Thermal degradation and flame retardancy properties of ABS/lignin: Effects of lignin content and reactive compatibilization. Thermochimica Acta, 2011, 518, 59-65.	2.7	108
128	Flame retarded polymer nanocomposites: Development, trend and future perspective. Science China Chemistry, 2011, 54, 302-313.	8.2	75
129	How nanoâ€fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polymers for Advanced Technologies, 2011, 22, 1139-1146.	3.2	55
130	Synthesis, characterization, and properties of degradable poly(l″actic acid)/poly(butylene) Tj ETQq0 0 0 rgBT /0 Science, 2011, 120, 2985-2995.	Dverlock 1 2.6	.0 Tf 50 627 T 12
131	Synthesis and Characterization of Biodegradable Aliphatic-Aromatic Copolyesters Nanocomposites Containing POSS. Advanced Materials Research, 2011, 236-238, 2028-2031.	0.3	0
132	Cure of Neat Resins and Properties of Composites for Interpenetrating Polymer Networks from the Novel Bismaleimide and Cyanate Containing Naphthalene. Advanced Materials Research, 2011, 233-235, 1636-1641.	0.3	1
133	Influence of carbon nanotubes with different functional groups on the morphology and properties of PPO/PA6 blends. Journal of Applied Polymer Science, 2010, 116, 1322-1328.	2.6	5
134	Study of a halogen-free flame-retarded Polypropylene composition with balanced strength and toughness. International Journal of Materials and Product Technology, 2010, 37, 350.	0.2	3
135	Interfacial interaction of clay with binary blends of polyamide 6 with High-Density Polyethylene (HDPE) and HDPE-graft-acrylic acid studied by Positron Annihilation Lifetime Spectroscopy. International Journal of Materials and Product Technology, 2010, 37, 358.	0.2	0
136	Biodegradable aliphatic/aromatic copolyesters based on terephthalic acid and poly(L-lactic acid): Synthesis, characterization and hydrolytic degradation. Chinese Journal of Polymer Science (English) Tj ETQq0 0	0 r g.B T /Ov	verbock 10 Tf :
137	Effect of clay dispersion on the synergism between clay and intumescent flame retardants in polystyrene. Journal of Applied Polymer Science, 2010, 115, 777-783.	2.6	36
138	Effect of styreneâ€maleic anhydride as a reactive compatibilizer on the mechanical properties and flammability of intumescent flame retardant polystyrene. Journal of Applied Polymer Science, 2010, 118, 152-158.	2.6	7
139	Thermal degradation and flammability properties of HDPE/EVA/C60 nanocomposites. Thermochimica Acta, 2010, 506, 98-101.	2.7	35
140	Effects of corona discharge on the surface structure, morphology and properties of multi-walled carbon nanotubes. Applied Surface Science, 2010, 256, 6447-6453.	6.1	8
141	Functionalization of Carbon Nanotubes by Coronaâ€Discharge Induced Graft Polymerization for the Reinforcement of Epoxy Nanocomposites. Plasma Processes and Polymers, 2010, 7, 785-793.	3.0	43
142	Polystyrene/CaCO ₃ composites with different CaCO ₃ radius and different nano aCO ₃ content—structure and properties. Polymer Composites, 2010, 31, 1258-1264.	4.6	23
143	Nucleating effect of surface modified MWNTs on crystallization of MWNTs/PA6 composites. E-Polymers, 2010, 10, .	3.0	0
144	Crystallization and Rheological Behaviors of Amino-functionalized Multiwalled Carbon Nanotubes Filled Polyamide 6 Composites. Journal of Macromolecular Science - Physics, 2010, 49, 405-418.	1.0	6

#	Article	IF	CITATIONS
145	The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology, 2010, 21, 315603.	2.6	60
146	Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure. Nanoscale, 2010, 2, 389-393.	5.6	15
147	Aminofunctionalization effect on the microtribological behavior of carbon nanotube/bismaleimide nanocomposites. Journal of Applied Polymer Science, 2009, 113, 3484-3491.	2.6	11
148	Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behaviour of intumescent flame retarded polypropylene. Polymer Degradation and Stability, 2009, 94, 1979-1985.	5.8	66
149	Improved microhardness and microtribological properties of bismaleimide nanocomposites obtained by enhancing interfacial interaction through carbon nanotube functionalization. Polymers for Advanced Technologies, 2009, 20, 849-856.	3.2	13
150	Synthesis of a novel oligomeric intumescent flame retardant and its application in polypropylene. Polymer Engineering and Science, 2009, 49, 1326-1331.	3.1	72
151	Relaxation study of Poly(methylmethacrylate) in miscible blends with poly(ethylene oxide) by low-frequency anelastic spectroscopy. Physica B: Condensed Matter, 2009, 404, 1200-1203.	2.7	5
152	The effects of irradiation cross-linking on the thermal degradation and flame-retardant properties of the HDPE/EVA/magnesium hydroxide composites. Radiation Physics and Chemistry, 2009, 78, 922-926.	2.8	66
153	Preparation and characterization of biodegradable aliphatic–aromatic copolyesters/nano-SiO2 hybrids via in situ melt polycondensation. Chinese Chemical Letters, 2009, 20, 1348-1352.	9.0	3
154	Effects of Reactive Compatibilization on the Morphological, Thermal, Mechanical, and Rheological Properties of Intumescent Flame-Retardant Polypropylene. ACS Applied Materials & Interfaces, 2009, 1, 452-459.	8.0	71
155	Flame retardant mechanism of organo-bentonite in polypropylene. Applied Clay Science, 2009, 45, 178-184.	5.2	70
156	Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites. Journal of Materials Chemistry, 2009, 19, 1305.	6.7	102
157	Fabrication of fullerene-decorated carbon nanotubes and their application in flame-retarding polypropylene. Nanoscale, 2009, 1, 118.	5.6	73
158	Effects of the Competition between Grafting Reaction and Decomposition on the Miscibility and Rheological Behaviors of PS/POE Blends in the Presence of AlCl ₃ . Polymer-Plastics Technology and Engineering, 2009, 48, 1185-1190.	1.9	6
159	DYNAMIC RHEOLOGICAL ANALYSIS AS A SENSITIVE METHOD FOR ANALYZING STRUCTURAL CHANGES DURING THERMO-OXIDATION OF POLYOLEFIN ELASTOMERS. Chinese Journal of Polymer Science (English Edition), 2009, 27, 183.	3.8	5
160	EFFECTS OF MELT VISCOSITY ON THE PREFERENTIAL INTERCALATIONBEHAVIOR OF CLAY IN IMMISCIBLE POLYPROPYLENE/POLYSTYRENE BLENDS. Acta Polymerica Sinica, 2009, 009, 145-152.	0.0	1
161	SYNTHESIS AND CHARACTERIZATION OF BIODEGRADABLEPOLY(5-HYDROXYLEVULINIC) Tj ETQq1 1 0.784314 rg	BT /Overlo	ock 10 Tf 50
162	DEGRADATION CONTROL AND PROPERTIES OPTIMIZATION OF <i>in situ</i> COMPATIBILIZED PS/POE BLENDS BY FRIEDEL-CRAFTS ALKYLATION REACTION. Acta Polymerica Sinica, 2009, 009, 763-768.	0.0	5

#	Article	IF	CITATIONS
163	Electron beam irradiated HDPE/EVA/Mg(OH)2 composites for flame-retardant electric cables. Frontiers of Materials Science in China, 2008, 2, 426-429.	0.5	17
164	Effect of silane grafting on the microstructure of high-density polyethylene/organically modified montmorillonite nanocomposites. Polymer International, 2008, 57, 50-56.	3.1	15
165	Effect of microencapsulated curing agents on the curing behavior for diglycidyl ether of bisphenol A epoxy resin systems. Journal of Applied Polymer Science, 2008, 107, 1661-1669.	2.6	32
166	The influence of acrylic acid groups on the microstructure of HDPE/BT system studied by positron annihilation. Journal of Applied Polymer Science, 2008, 108, 1557-1561.	2.6	2
167	<i>Exâ€situ</i> concept for toughening the RTMable BMI matrix composites. II. Improving the compression after impact. Journal of Applied Polymer Science, 2008, 108, 2211-2217.	2.6	18
168	" <i>Ex situ</i> ―concept for toughening the RTMable BMI matrix composites, Part I: Improving the interlaminar fracture toughness. Journal of Applied Polymer Science, 2008, 109, 1625-1634.	2.6	48
169	Polypropylene/clay nanocomposites prepared by <i>in situ</i> graftingâ€melt intercalation with a novel cointercalating monomer. Journal of Applied Polymer Science, 2008, 110, 616-623.	2.6	21
170	Influence of polarity on the preferential intercalation behavior of clay in immiscible polypropylene/polystyrene blend. Journal of Applied Polymer Science, 2008, 110, 3130-3139.	2.6	13
171	Functionalizing Carbon Nanotubes by Grafting on Intumescent Flame Retardant: Nanocomposite Synthesis, Morphology, Rheology, and Flammability. Advanced Functional Materials, 2008, 18, 414-421.	14.9	230
172	Effects of metal chelates on a novel oligomeric intumescent flame retardant system for polypropylene. Journal of Analytical and Applied Pyrolysis, 2008, 82, 286-291.	5.5	82
173	Synthesis and hydrosilation of multi-vinyl branched siloxane for self-healing system. Chinese Chemical Letters, 2008, 19, 655-657.	9.0	0
174	Thermal degradation and flame retardancy of polypropylene/C60 nanocomposites. Thermochimica Acta, 2008, 473, 106-108.	2.7	70
175	"Cutting effect―of organoclay platelets in compatibilizing immiscible polypropylene/polystyrene blends. Journal of Zhejiang University: Science A, 2008, 9, 1614-1620.	2.4	31
176	Preparation of glass fiber-supported platinum complex catalyst for hydrosilylation reactions. Catalysis Communications, 2008, 9, 1092-1095.	3.3	30
177	Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. Journal of Materials Chemistry, 2008, 18, 5083.	6.7	146
178	Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites. Applied Clay Science, 2008, 42, 238-245.	5.2	103
179	C ₆₀ reduces the flammability of polypropylene nanocomposites by <i>in situ</i> forming a gelled-ball network. Nanotechnology, 2008, 19, 225707.	2.6	77
180	Effects of High-Energy Electron Beam Irradiation on the Properties of Flame-Retardant HDPE/EVA/Mg(OH) ₂ Composites. Polymer-Plastics Technology and Engineering, 2008, 47, 1097-1100.	1.9	11

#	Article	IF	CITATIONS
181	THERMAL DECOMPOSITION AND FLAMMABILITY OF ACRYLONITRILE-BUTADIENE-STYRENE/MULTI-WALLED CARBON NANOTUBES COMPOSITES. Chinese Journal of Polymer Science (English Edition), 2008, 26, 331.	3.8	7
182	The effects of the variations of carbon nanotubes on the micro-tribological behavior of carbon nanotubes/bismaleimide nanocomposite. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1957-1964.	7.6	63
183	Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology, 2007, 18, 375602.	2.6	144
184	Improving dispersion of multiwalled carbon nanotubes in polyamide 6 composites through aminoâ€functionalization. Journal of Applied Polymer Science, 2007, 106, 2898-2906.	2.6	34
185	Isothermal crystallization kinetics and melting behavior of multiwalled carbon nanotubes/polyamide-6 composites. Journal of Applied Polymer Science, 2007, 105, 3531-3542.	2.6	58
186	Electric conductivity of PS/PA6/carbon black composites. Journal of Applied Polymer Science, 2007, 103, 1042-1047.	2.6	23
187	Carboxylâ€ŧerminated butadiene–acrylonitrile rubber modified cyanate ester resin. Journal of Applied Polymer Science, 2007, 106, 3098-3104.	2.6	21
188	Novel modification of cyanate ester by epoxidized polysiloxane. Journal of Applied Polymer Science, 2007, 105, 2020-2026.	2.6	28
189	Location of a nanoclay at the interface in an immiscible poly(εâ€caprolactone)/poly(ethylene oxide) blend and its effect on the compatibility of the components. Journal of Applied Polymer Science, 2007, 106, 3125-3135.	2.6	51
190	Novel preparation and mechanical properties of rigid polyurethane foam/organoclay nanocomposites. Journal of Applied Polymer Science, 2007, 106, 439-447.	2.6	71
191	Surface-modifiers of clay on mechanical properties of rigid polyurethane foams/organoclay nanocomposites. Journal of Applied Polymer Science, 2007, 105, 2988-2995.	2.6	23
192	Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. Journal of Applied Polymer Science, 2007, 106, 2008-2017.	2.6	42
193	A novel intumescent flame retardant: Synthesis and application in ABS copolymer. Polymer Degradation and Stability, 2007, 92, 720-726.	5.8	191
194	Degradation and thermal properties of in situ compatibilized PS/POE blends. Polymer Degradation and Stability, 2007, 92, 545-551.	5.8	24
195	Effect of clay on the morphology of binary blends of polyamide 6 with high density polyethylene and HDPE-graft-acrylic acid. Polymer Engineering and Science, 2007, 47, 551-559.	3.1	52
196	Structure and properties of in situ compatibilized polystyrene/polyolefin elastomer blends. Polymer Engineering and Science, 2007, 47, 951-959.	3.1	12
197	A Novel Glass Fiber-Supported Platinum Catalyst for Self-healing Polymer Composites: Structure and Reactivity. Chinese Journal of Catalysis, 2007, 28, 947-952.	14.0	7
198	Effect of bentonite on the structure and mechanical properties of CE/CTBN system. Journal of Materials Science, 2007, 42, 4603-4608.	3.7	13

#	Article	IF	CITATIONS
199	Curing behavior and kinetic analysis of epoxy resin/multi-walled carbon nanotubes composites. Frontiers of Materials Science in China, 2007, 1, 415-422.	0.5	11
200	Clay network in ABS-graft-MAH nanocomposites: Rheology and flammability. Polymer Degradation and Stability, 2007, 92, 1439-1445.	5.8	65
201	Application of percolation model on the brittle to ductile transition for polystyrene and polyolefin elastomer blends. EXPRESS Polymer Letters, 2007, 1, 37-43.	2.1	11
202	A METHOD TO QUANTIFY CRAZING DEFORMATION BY TENSILE TESTS FOR POLYSTYRENE/POLYOLEFIN ELASTOMER IMMISCIBLE BLENDS. Chinese Journal of Polymer Science (English Edition), 2007, 25, 387.	3.8	2
203	Influence of Phase Dispersant on the Cocross-Linking of Polyvinyl Chloride with Low Density Polyethylene. Polymer-Plastics Technology and Engineering, 2006, 45, 1271-1276.	1.9	1
204	Structure and properties of multiwalled carbon nanotubes/cyanate ester composites. Polymer Engineering and Science, 2006, 46, 670-679.	3.1	16
205	Effect of multi-walled carbon nanotubes dispersity on the light transmittancy of multi-walled carbon nanotubes/epoxy composites. Polymer Engineering and Science, 2006, 46, 635-642.	3.1	17
206	Polymorphism of nylon-6 in multiwalled carbon nanotubes/nylon-6 composites. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1499-1512.	2.1	59
207	Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6. European Polymer Journal, 2006, 42, 3230-3235.	5.4	77
208	Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polymer Degradation and Stability, 2006, 91, 1295-1299.	5.8	209
209	Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polymer Degradation and Stability, 2006, 91, 2046-2052.	5.8	82
210	Preferential melt intercalation of clay in ABS/brominated epoxy resin–antimony oxide (BER–AO) nanocomposites and its synergistic effect on thermal degradation and combustion behavior. Polymer Degradation and Stability, 2006, 91, 1972-1979.	5.8	35
211	Studies of ABS-graft-maleic anhydride/clay nanocomposites: Morphologies, thermal stability and flammability properties. Polymer Degradation and Stability, 2006, 91, 2951-2959.	5.8	68
212	On promoting dispersion and intercalation of bentonite in high density polyethylene by grafting vinyl triethoxysilane. Journal of Materials Science, 2006, 41, 5433-5440.	3.7	0
213	Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. Journal of Applied Polymer Science, 2006, 100, 97-104.	2.6	117
214	Investigation of free volume, interfacial, and toughening behavior for cyanate ester/bentonite nanocomposites by positron annihilation. Journal of Applied Polymer Science, 2006, 102, 1509-1515.	2.6	31
215	Free-volume hole properties of two kinds thermoplastic nanocomposites based on polymer blends probed by positron annihilation lifetime spectroscopy. Journal of Applied Polymer Science, 2006, 102, 2463-2469.	2.6	15
216	Improvement of the Impact Damage Resistance of BMI/Graphite Laminates by the Ex-situ Method. High Performance Polymers, 2006, 18, 907-917.	1.8	18

#	Article	IF	CITATIONS
217	Study on the structure and properties of cyanate ester/bentonite nanocomposites. Journal of Applied Polymer Science, 2005, 96, 632-637.	2.6	17
218	On promoting intercalation and exfoliation of bentonite in high-density polyethylene by grafting acrylic acid. Journal of Applied Polymer Science, 2005, 96, 2429-2434.	2.6	27
219	Structure and properties of CE/CTBN/EP blends: II. Effect of EP on the mechanical properties and thermostability of the CE/CTBN system. Polymer International, 2005, 54, 369-373.	3.1	12
220	In situ compatibilization of polystyrene/polyolefin elastomer blends by the Friedel-Crafts alkylation reaction. Polymer International, 2005, 54, 1647-1652.	3.1	32
221	Toughening of cyanate ester resin by carboxyl terminated nitrile rubber. Polymers for Advanced Technologies, 2004, 15, 628-631.	3.2	43
222	The effect of morphology on the optical properties of transparent epoxy/montmorillonite composites. Polymer International, 2004, 53, 85-91.	3.1	37
223	Morphology evolution of immiscible LDPE/PVC blends in the presence of compatibilizer and phase dispersant. Journal of Applied Polymer Science, 2004, 91, 763-772.	2.6	6
224	Novel method of preparing microporous membrane by selective dissolution of chitosan/polyethylene glycol blend membrane. Journal of Applied Polymer Science, 2004, 91, 2840-2847.	2.6	52
225	Toughening of Polystyrene with Ethylene-Propylene-Diene Terpolymer(EPDM) Compatibilized by Styrene-Butadiene-Styrene Block Copolymer(SBS). Macromolecular Materials and Engineering, 2004, 289, 743-748.	3.6	22
226	Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN. Journal of Membrane Science, 2004, 245, 95-102.	8.2	72
227	Phase dispersion-crosslinking synergism in binary blends of poly(vinyl chloride) with low-density polyethylene: Entrapping phenomenon in PVC/LDPE/DCP blend. Journal of Applied Polymer Science, 2003, 88, 1296-1303.	2.6	7
228	Application of phase dispersion-crosslinking synergism on recycling commingled plastic wastes. Journal of Applied Polymer Science, 2001, 82, 2947-2952.	2.6	16
229	Influence of interfacial adhesion on stress-strain properties of highly filled polyethylene. Angewandte Makromolekulare Chemie, 1999, 265, 1-4.	0.2	16
230	Study on phase dispersion-crosslinking synergism in binary blends of poly(vinyl chloride) with low density polyethylene. Polymer, 1997, 38, 155-158.	3.8	27
231	In situ crosslinking and its synergism with compatibilization in polyvinyl chloride/polyethylene blends. Polymer, 1997, 38, 131-133.	3.8	22
232	Study on compatibilization-crosslinking synergism in PVC/LDPE blends. Angewandte Makromolekulare Chemie, 1993, 212, 45-52.	0.2	15
233	Negative synergism of crosslinking agent and antioxidant in polyethylene. Polymer Engineering and Science, 1992, 32, 921-923.	3.1	2
234	Flame retardant polymer nanocomposites with fullerenes as filler. , 0, , 276-313.		1

Flame retardant polymer nanocomposites with fullerenes as filler. , 0, , 276-313. 234

#	Article	IF	CITATIONS
235	Flame Retardancy and Mechanical Property of Bi-Layer Polypropylene Sheets with Flame Retardant Selective Distribution. Advanced Materials Research, 0, 396-398, 2145-2148.	0.3	0
236	Effects of Nano-SiO ₂ and Polyhedral Oligomeric Silsesquioxanes (POSS) Reagent on the Properties of Biodegradable Aliphatic-Aromatic Copolyesters. Applied Mechanics and Materials, 0, 200, 186-189.	0.2	0