Jacqueline Monaghan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3243008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. Annual Review of Plant Biology, 2022, 73, 93-121.	18.7	22
2	Activation and turnover of the plant immune signaling kinase BIK1: a fine balance. Essays in Biochemistry, 2022, 66, 207-218.	4.7	7
3	Cross-kingdom regulation of calcium- and/or calmodulin-dependent protein kinases by phospho-switches that relieve autoinhibition. Current Opinion in Plant Biology, 2022, 68, 102251.	7.1	4
4	A novel allele of the <i>Arabidopsis thaliana</i> MACPF protein CAD1 results in deregulated immune signaling. Genetics, 2021, 217, .	2.9	9
5	Receptor-like cytoplasmic kinase MAZZA mediates developmental processes with CLAVATA1 family receptors in Arabidopsis. Journal of Experimental Botany, 2021, 72, 4853-4870.	4.8	18
6	Phosphorylation-dependent subfunctionalization of the calcium-dependent protein kinase CPK28. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
7	<i>Proteobacteria</i> Contain Diverse flg22 Epitopes That Elicit Varying Immune Responses in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2021, 34, 504-510.	2.6	19
8	Differential regulation of the calcium-dependent protein kinase CPK28 by site-specific modification. Plant Physiology, 2021, 186, 1358-1361.	4.8	6
9	Truncated variants of Ca2+-dependent protein kinases: a conserved regulatory mechanism?. Trends in Plant Science, 2021, 26, 1002-1005.	8.8	6
10	Large-scale identification of ubiquitination sites on membrane-associated proteins in <i>Arabidopsis thaliana</i> seedlings. Plant Physiology, 2021, 185, 1483-1488.	4.8	29
11	Pattern-Triggered Oxidative Burst and Seedling Growth Inhibition Assays in Arabidopsis thaliana . Journal of Visualized Experiments, 2019, , .	0.3	22
12	Modulation of plant innate immune signaling by small peptides. Current Opinion in Plant Biology, 2019, 51, 22-28.	7.1	48
13	Regulation of Plant Immune Signaling by Calcium-Dependent Protein Kinases. Molecular Plant-Microbe Interactions, 2019, 32, 6-19.	2.6	62
14	A Regulatory Module Controlling Homeostasis of a Plant Immune Kinase. Molecular Cell, 2018, 69, 493-504.e6.	9.7	161
15	Conserved Degradation of Orthologous RLCKs Regulates Immune Homeostasis. Trends in Plant Science, 2018, 23, 554-557.	8.8	13
16	The jasmonate receptor COI1 is required for AtPep1-induced immune responses in Arabidopsis thaliana. BMC Research Notes, 2018, 11, 555.	1.4	6
17	The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science, 2017, 355, 287-289.	12.6	541
18	Autophosphorylation-based Calcium (Ca2+) Sensitivity Priming and Ca2+/Calmodulin Inhibition of Arabidopsis thaliana Ca2+-dependent Protein Kinase 28 (CPK28). Journal of Biological Chemistry, 2017, 292–3988-4002	3.4	48

JACQUELINE MONAGHAN

#	Article	IF	CITATIONS
19	Opposing effects on two phases of defense responses from concerted actions of HSC70 and BON1 in Arabidopsis. Plant Physiology, 2015, 169, pp.00970.2015.	4.8	26
20	The calcium-dependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst. Plant Signaling and Behavior, 2015, 10, e1018497.	2.4	73
21	Mapping mutations in plant genomes with the user-friendly web application CandiSNP. Plant Methods, 2014, 10, 41.	4.3	23
22	A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation. Science, 2014, 343, 1509-1512.	12.6	152
23	The Calcium-Dependent Protein Kinase CPK28 Buffers Plant Immunity and Regulates BIK1 Turnover. Cell Host and Microbe, 2014, 16, 605-615.	11.0	208
24	<scp>HSP</scp> 90s are required for <scp>NLR</scp> immune receptor accumulation in Arabidopsis. Plant Journal, 2014, 79, 427-439.	5.7	80
25	Editorial: Mechanisms regulating immunity in plants. Frontiers in Plant Science, 2013, 4, 64.	3.6	10
26	Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 2012, 15, 349-357.	7.1	626
27	The HEAT Repeat Protein ILITYHIA is Required for Plant Immunity. Plant and Cell Physiology, 2010, 51, 742-753.	3.1	43
28	Dissecting plant defence signal transduction: modifiers ofsnc1inArabidopsisâ€. Canadian Journal of Plant Pathology, 2010, 32, 35-42.	1.4	27
29	Two Putative RNA-Binding Proteins Function with Unequal Genetic Redundancy in the MOS4-Associated Complex Â. Plant Physiology, 2010, 154, 1783-1793.	4.8	50
30	Two Prp19-Like U-Box Proteins in the MOS4-Associated Complex Play Redundant Roles in Plant Innate Immunity. PLoS Pathogens, 2009, 5, e1000526.	4.7	141
31	R Protein Activation: Another Player Revealed. Cell Host and Microbe, 2008, 3, 9-10.	11.0	2
32	Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes and Development, 2007, 21, 1484-1493.	5.9	141