Raul Zurita-Milla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3242771/publications.pdf

Version: 2024-02-01

82 papers 2,605 citations

304743 22 h-index 49 g-index

90 all docs

90 docs citations

90 times ranked 3333 citing authors

#	Article	IF	CITATIONS
1	Embedding artificial intelligence in society: looking beyond the EU AI master plan using the culture cycle. AI and Society, 2023, 38, 1465-1484.	4.6	5
2	Incorporating Spatial Autocorrelation in Machine Learning Models Using Spatial Lag and Eigenvector Spatial Filtering Features. ISPRS International Journal of Geo-Information, 2022, 11, 242.	2.9	9
3	CGC: a Scalable Python Package for Co- and Tri-Clustering of Geodata Cubes. Journal of Open Source Software, 2022, 7, 4032.	4.6	O
4	Area and Feature Guided Regularised Random Forest: a novel method for predictive modelling of binary phenomena. The case of illegal landfill in Canary Island. International Journal of Geographical Information Science, 2022, 36, 2473-2495.	4.8	2
5	Identifying Spatiotemporal Patterns in Land Use and Cover Samples from Satellite Image Time Series. Remote Sensing, 2021, 13, 974.	4.0	11
6	Towards wide-scale adoption of open science practices: The role of open science communities. Science and Public Policy, 2021, 48, 605-611.	2.4	27
7	Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review. International Journal of Biometeorology, 2021, 65, 779-803.	3.0	19
8	Exploring Spring Onset at Continental Scales: Mapping Phenoregions and Correlating Temperature and Satellite-Based Phenometrics. IEEE Transactions on Big Data, 2020, 6, 583-593.	6.1	3
9	Exploring differences in spatial patterns and temporal trends of phenological models at continental scale using gridded temperature time-series. International Journal of Biometeorology, 2020, 64, 409-421.	3.0	5
10	Land Cover Classification Using Extremely Randomized Trees: A Kernel Perspective. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 1702-1706.	3.1	15
11	An interactive web-based geovisual analytics platform for co-clustering spatio-temporal data. Computers and Geosciences, 2020, 137, 104420.	4.2	7
12	A Multiscale Random Forest Kernel for Land Cover Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2842-2852.	4.9	8
13	An overview of clustering methods for geo-referenced time series: from one-way clustering to coand tri-clustering. International Journal of Geographical Information Science, 2020, 34, 1822-1848.	4.8	26
14	An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2020, 88, 102051.	2.8	58
15	Dataset Reduction Techniques to Speed Up SVD Analyses on Big Geo-Datasets. ISPRS International Journal of Geo-Information, 2019, 8, 55.	2.9	5
16	Temporal-Spatial Variation in Questing Tick Activity in the Netherlands: The Effect of Climatic and Habitat Factors. Vector-Borne and Zoonotic Diseases, 2019, 19, 494-505.	1.5	10
17	Evaluating the Performance of a Random Forest Kernel for Land Cover Classification. Remote Sensing, 2019, 11, 575.	4.0	34
18	Modelling tick bite risk by combining random forests and count data regression models. PLoS ONE, 2019, 14, e0216511.	2.5	10

#	Article	IF	CITATIONS
19	Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sensing of Environment, 2018, 215, 517-529.	11.0	153
20	Triclustering Georeferenced Time Series for Analyzing Patterns of Intra-Annual Variability in Temperature. Annals of the American Association of Geographers, 2018, 108, 71-87.	2.2	14
21	Checking the Consistency of Volunteered Phenological Observations While Analysing Their Synchrony. ISPRS International Journal of Geo-Information, 2018, 7, 487.	2.9	4
22	Identifying Favorable Spatio-Temporal Conditions for West Nile Virus Outbreaks by Co-Clustering of Modis LST Indices Time Series. , 2018, , .		5
23	Use of Guided Regularized Random Forest for Biophysical Parameter Retrieval. , 2018, , .		2
24	Influence of source and scale of gridded temperature data on modelled spring onset patterns in the conterminous United States. International Journal of Climatology, 2018, 38, 5430-5440.	3.5	5
25	A Spark-Based Platform to Extract Phenological Information from Satellite Images. , 2018, , .		0
26	Using volunteered observations to map human exposure to ticks. Scientific Reports, 2018, 8, 15435.	3.3	24
27	Development and analysis of spring plant phenology products: 36 years of 1-km grids over the conterminous US. Agricultural and Forest Meteorology, 2018, 262, 34-41.	4.8	17
28	A Cloud-Based Multi-Temporal Ensemble Classifier to Map Smallholder Farming Systems. Remote Sensing, 2018, 10, 729.	4.0	49
29	Identifying Environmental and Human Factors Associated With Tick Bites using Volunteered Reports and Frequent Pattern Mining. Transactions in GIS, 2017, 21, 277-299.	2.3	13
30	Mapping frequent spatio-temporal wind profile patterns using multi-dimensional sequential pattern mining. International Journal of Digital Earth, 2017, 10, 238-256.	3.9	6
31	Short communication: emerging technologies for biometeorology. International Journal of Biometeorology, 2017, 61, 81-88.	3.0	11
32	Identifying anomalously early spring onsets in the CESM large ensemble project. Climate Dynamics, 2017, 48, 3949-3966.	3.8	19
33	Identifying crops in smallholder farms using time series of WorldView-2 images. , 2017, , .		3
34	On the use of guided regularized random forests to identify crops in smallholder farm fields. , 2017, , .		2
35	Modelling and mapping tick dynamics using volunteered observations. International Journal of Health Geographics, 2017, 16, 41.	2.5	19
36	A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture. Remote Sensing, 2017, 9, 1048.	4.0	21

3

#	Article	IF	CITATIONS
37	Integrating support vector machines and random forests to classify crops in time series of Worldview-2 images. , $2017, \ldots$		2
38	A novel analysis of spring phenological patterns over Europe based on coâ€elustering. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1434-1448.	3.0	27
39	Interactive discovery of sequential patterns in time series of wind data. International Journal of Geographical Information Science, 2016, 30, 1486-1506.	4.8	8
40	Introducing co-clustering for hyperspectral image analysis. , 2015, , .		1
41	Lilac and honeysuckle phenology data 1956–2014. Scientific Data, 2015, 2, 150038.	5.3	24
42	Trends and Natural Variability of Spring Onset in the Coterminous United States as Evaluated by a New Gridded Dataset of Spring Indices. Journal of Climate, 2015, 28, 8363-8378.	3.2	73
43	Last Minutes. Massachusetts Review, 2015, 56, 43-43.	0.0	0
44	Using geographically weighted regression kriging for crop yield mapping in West Africa. International Journal of Geographical Information Science, 2015, 29, 234-257.	4.8	30
45	Using self-organising maps to explore ozone profile validation results – SCIAMACHY limb compared to ground-based lidar observations. Atmospheric Measurement Techniques, 2015, 8, 1951-1963.	3.1	0
46	Co-clustering geo-referenced time series: exploring spatio-temporal patterns in Dutch temperature data. International Journal of Geographical Information Science, 2015, 29, 624-642.	4.8	26
47	Visualizing the ill-posedness of the inversion of a canopy radiative transfer model: A case study for Sentinel-2. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 7-18.	2.8	18
48	A Matlab© toolbox for calculating spring indices from daily meteorological data. Computers and Geosciences, 2015, 83, 46-53.	4.2	31
49	Developing a Workflow to Identify Inconsistencies in Volunteered Geographic Information: A Phenological Case Study. PLoS ONE, 2015, 10, e0140811.	2.5	16
50	Mining Frequent Spatio-Temporal Patterns in Wind Speed and Direction. Lecture Notes in Geoinformation and Cartography, 2014, , 143-161.	1.0	2
51	Mapping a Specific Crop—A Temporal Approach for Sugarcane Ratoon. Journal of the Indian Society of Remote Sensing, 2014, 42, 325-334.	2.4	16
52	Investigating rural poverty and marginality in Burkina Faso using remote sensing-based products. International Journal of Applied Earth Observation and Geoinformation, 2014, 26, 322-334.	2.8	21
53	Exploring Spatiotemporal Phenological Patterns and Trajectories Using Self-Organizing Maps. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 1914-1921.	6.3	18
54	Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring. International Journal of Applied Earth Observation and Geoinformation, 2013, 23, 132-141.	2.8	125

#	Article	IF	Citations
55	Self-organizing maps as an approach to exploring spatiotemporal diffusion patterns. International Journal of Health Geographics, 2013, 12, 60.	2.5	20
56	Naturalised grapevines collected from arid regions in Northern Chile exhibit a high level of genetic diversity. Australian Journal of Grape and Wine Research, 2013, 19, 299-310.	2.1	12
57	Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment, 2013, 131, 85-102.	11.0	144
58	Visual Discovery of Synchronisation in Weather Data at Multiple Temporal Resolutions. Cartographic Journal, 2013, 50, 247-256.	1.5	10
59	Modeling Crop Yield in Westâ€African Rainfed Agriculture Using Global and Local Spatial Regression. Agronomy Journal, 2013, 105, 1177-1188.	1.8	14
60	Geographic information system–based fuzzy-logic analysis for petroleum exploration with a case study of northern South America. AAPG Bulletin, 2012, 96, 2121-2142.	1.5	17
61	Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model. Remote Sensing of Environment, 2012, 121, 415-425.	11.0	100
62	Future land use effects on the connectivity of protected area networks in southeastern Spain. Journal for Nature Conservation, 2012, 20, 326-336.	1.8	40
63	GIS-based Analysis for Petroleum Exploration - Case Study of Northern South America. , 2012, , .		0
64	Multitemporal Unmixing of Medium-Spatial-Resolution Satellite Images: A Case Study Using MERIS Images for Land-Cover Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 4308-4317.	6.3	45
65	Using MERIS fused images for land-cover mapping and vegetation status assessment in heterogeneous landscapes. International Journal of Remote Sensing, 2011, 32, 973-991.	2.9	24
66	Development of an Open-Source Toolbox for the Analysis and Visualization of Remotely Sensed Time Series. Cartographica, 2011, 46, 227-238.	0.4	4
67	Gridding Artifacts on Medium-Resolution Satellite Image Time Series: MERIS Case Study. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 2601-2611.	6.3	21
68	Possibilities and limitations of artificial neural networks for subpixel mapping of land cover. International Journal of Remote Sensing, 2011, 32, 7203-7226.	2.9	48
69	Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics. Remote Sensing of Environment, 2009, 113, 1874-1885.	11.0	127
70	Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution. Remote Sensing of Environment, 2008, 112, 1-18.	11.0	99
71	Multisensor and multiresolution image fusion using the linear mixing model. , 2008, , 67-84.		13
72	Unmixing-Based Landsat TM and MERIS FR Data Fusion. IEEE Geoscience and Remote Sensing Letters, 2008, 5, 453-457.	3.1	205

#	Article	IF	CITATIONS
73	Physically-based retrievals of Norway spruce canopy variables from very high spatial resolution hyperspectral data., 2007,,.		3
74	Effects of MERIS L1b radiometric calibration on regional land cover mapping and land products. International Journal of Remote Sensing, 2007, 28, 653-673.	2.9	15
75	A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. International Journal of Applied Earth Observation and Geoinformation, 2007, 9, 165-193.	2.8	453
76	Using MERIS on Envisat for land cover mapping in the Netherlands. International Journal of Remote Sensing, 2007, 28, 637-652.	2.9	20
77	Applicability of the PROSPECT model for Norway spruce needles. International Journal of Remote Sensing, 2006, 27, 5315-5340.	2.9	101
78	Possibilities of MERIS for sub-pixel regional land cover mapping. , 2005, , .		0
79	Assessment of long-term vicarious calibration efforts of MERIS on land product quality. , 2004, 5570, 363.		2
80	Characterizing the spatial and temporal variability of biophysical variables of a wheat crop using hyper-spectral measurements. , 0 , , .		2
81	CLUSTERING-BASED APPROACHES TO THE EXPLORATION OF SPATIO-TEMPORAL DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W7, 1387-1391.	0.2	5
82	A WEB-BASED INTERACTIVE PLATFORM FOR CO-CLUSTERING SPATIO-TEMPORAL DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W7, 175-179.	0.2	1