Raul Zurita-Milla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3242771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. International Journal of Applied Earth Observation and Geoinformation, 2007, 9, 165-193.	2.8	453
2	Unmixing-Based Landsat TM and MERIS FR Data Fusion. IEEE Geoscience and Remote Sensing Letters, 2008, 5, 453-457.	3.1	205
3	Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sensing of Environment, 2018, 215, 517-529.	11.0	153
4	Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment, 2013, 131, 85-102.	11.0	144
5	Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics. Remote Sensing of Environment, 2009, 113, 1874-1885.	11.0	127
6	Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring. International Journal of Applied Earth Observation and Geoinformation, 2013, 23, 132-141.	2.8	125
7	Applicability of the PROSPECT model for Norway spruce needles. International Journal of Remote Sensing, 2006, 27, 5315-5340.	2.9	101
8	Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model. Remote Sensing of Environment, 2012, 121, 415-425.	11.0	100
9	Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution. Remote Sensing of Environment, 2008, 112, 1-18.	11.0	99
10	Trends and Natural Variability of Spring Onset in the Coterminous United States as Evaluated by a New Gridded Dataset of Spring Indices. Journal of Climate, 2015, 28, 8363-8378.	3.2	73
11	An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2020, 88, 102051.	2.8	58
12	A Cloud-Based Multi-Temporal Ensemble Classifier to Map Smallholder Farming Systems. Remote Sensing, 2018, 10, 729.	4.0	49
13	Possibilities and limitations of artificial neural networks for subpixel mapping of land cover. International Journal of Remote Sensing, 2011, 32, 7203-7226.	2.9	48
14	Multitemporal Unmixing of Medium-Spatial-Resolution Satellite Images: A Case Study Using MERIS Images for Land-Cover Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 4308-4317.	6.3	45
15	Future land use effects on the connectivity of protected area networks in southeastern Spain. Journal for Nature Conservation, 2012, 20, 326-336.	1.8	40
16	Evaluating the Performance of a Random Forest Kernel for Land Cover Classification. Remote Sensing, 2019, 11, 575.	4.0	34
17	A Matlab© toolbox for calculating spring indices from daily meteorological data. Computers and Geosciences, 2015, 83, 46-53.	4.2	31
18	Using geographically weighted regression kriging for crop yield mapping in West Africa. International Journal of Geographical Information Science, 2015, 29, 234-257.	4.8	30

#	Article	IF	CITATIONS
19	A novel analysis of spring phenological patterns over Europe based on coâ€elustering. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1434-1448.	3.0	27
20	Towards wide-scale adoption of open science practices: The role of open science communities. Science and Public Policy, 2021, 48, 605-611.	2.4	27
21	Co-clustering geo-referenced time series: exploring spatio-temporal patterns in Dutch temperature data. International Journal of Geographical Information Science, 2015, 29, 624-642.	4.8	26
22	An overview of clustering methods for geo-referenced time series: from one-way clustering to co- and tri-clustering. International Journal of Geographical Information Science, 2020, 34, 1822-1848.	4.8	26
23	Using MERIS fused images for land-cover mapping and vegetation status assessment in heterogeneous landscapes. International Journal of Remote Sensing, 2011, 32, 973-991.	2.9	24
24	Lilac and honeysuckle phenology data 1956–2014. Scientific Data, 2015, 2, 150038.	5.3	24
25	Using volunteered observations to map human exposure to ticks. Scientific Reports, 2018, 8, 15435.	3.3	24
26	Gridding Artifacts on Medium-Resolution Satellite Image Time Series: MERIS Case Study. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 2601-2611.	6.3	21
27	Investigating rural poverty and marginality in Burkina Faso using remote sensing-based products. International Journal of Applied Earth Observation and Geoinformation, 2014, 26, 322-334.	2.8	21
28	A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture. Remote Sensing, 2017, 9, 1048.	4.0	21
29	Using MERIS on Envisat for land cover mapping in the Netherlands. International Journal of Remote Sensing, 2007, 28, 637-652.	2.9	20
30	Self-organizing maps as an approach to exploring spatiotemporal diffusion patterns. International Journal of Health Geographics, 2013, 12, 60.	2.5	20
31	Identifying anomalously early spring onsets in the CESM large ensemble project. Climate Dynamics, 2017, 48, 3949-3966.	3.8	19
32	Modelling and mapping tick dynamics using volunteered observations. International Journal of Health Geographics, 2017, 16, 41.	2.5	19
33	Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review. International Journal of Biometeorology, 2021, 65, 779-803.	3.0	19
34	Exploring Spatiotemporal Phenological Patterns and Trajectories Using Self-Organizing Maps. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 1914-1921.	6.3	18
35	Visualizing the ill-posedness of the inversion of a canopy radiative transfer model: A case study for Sentinel-2. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 7-18.	2.8	18
36	Geographic information system–based fuzzy-logic analysis for petroleum exploration with a case study of northern South America. AAPG Bulletin, 2012, 96, 2121-2142.	1.5	17

#	Article	IF	CITATIONS
37	Development and analysis of spring plant phenology products: 36 years of 1-km grids over the conterminous US. Agricultural and Forest Meteorology, 2018, 262, 34-41.	4.8	17
38	Mapping a Specific Crop—A Temporal Approach for Sugarcane Ratoon. Journal of the Indian Society of Remote Sensing, 2014, 42, 325-334.	2.4	16
39	Developing a Workflow to Identify Inconsistencies in Volunteered Geographic Information: A Phenological Case Study. PLoS ONE, 2015, 10, e0140811.	2.5	16
40	Effects of MERIS L1b radiometric calibration on regional land cover mapping and land products. International Journal of Remote Sensing, 2007, 28, 653-673.	2.9	15
41	Land Cover Classification Using Extremely Randomized Trees: A Kernel Perspective. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 1702-1706.	3.1	15
42	Modeling Crop Yield in Westâ€African Rainfed Agriculture Using Global and Local Spatial Regression. Agronomy Journal, 2013, 105, 1177-1188.	1.8	14
43	Triclustering Georeferenced Time Series for Analyzing Patterns of Intra-Annual Variability in Temperature. Annals of the American Association of Geographers, 2018, 108, 71-87.	2.2	14
44	Multisensor and multiresolution image fusion using the linear mixing model. , 2008, , 67-84.		13
45	Identifying Environmental and Human Factors Associated With Tick Bites using Volunteered Reports and Frequent Pattern Mining. Transactions in GIS, 2017, 21, 277-299.	2.3	13
46	Naturalised grapevines collected from arid regions in Northern Chile exhibit a high level of genetic diversity. Australian Journal of Grape and Wine Research, 2013, 19, 299-310.	2.1	12
47	Short communication: emerging technologies for biometeorology. International Journal of Biometeorology, 2017, 61, 81-88.	3.0	11
48	Identifying Spatiotemporal Patterns in Land Use and Cover Samples from Satellite Image Time Series. Remote Sensing, 2021, 13, 974.	4.0	11
49	Visual Discovery of Synchronisation in Weather Data at Multiple Temporal Resolutions. Cartographic Journal, 2013, 50, 247-256.	1.5	10
50	Temporal-Spatial Variation in Questing Tick Activity in the Netherlands: The Effect of Climatic and Habitat Factors. Vector-Borne and Zoonotic Diseases, 2019, 19, 494-505.	1.5	10
51	Modelling tick bite risk by combining random forests and count data regression models. PLoS ONE, 2019, 14, e0216511.	2.5	10
52	Incorporating Spatial Autocorrelation in Machine Learning Models Using Spatial Lag and Eigenvector Spatial Filtering Features. ISPRS International Journal of Geo-Information, 2022, 11, 242.	2.9	9
53	Interactive discovery of sequential patterns in time series of wind data. International Journal of Geographical Information Science, 2016, 30, 1486-1506.	4.8	8
54	A Multiscale Random Forest Kernel for Land Cover Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2842-2852.	4.9	8

#	Article	IF	CITATIONS
55	An interactive web-based geovisual analytics platform for co-clustering spatio-temporal data. Computers and Geosciences, 2020, 137, 104420.	4.2	7
56	Mapping frequent spatio-temporal wind profile patterns using multi-dimensional sequential pattern mining. International Journal of Digital Earth, 2017, 10, 238-256.	3.9	6
57	Identifying Favorable Spatio-Temporal Conditions for West Nile Virus Outbreaks by Co-Clustering of Modis LST Indices Time Series. , 2018, , .		5
58	Influence of source and scale of gridded temperature data on modelled spring onset patterns in the conterminous United States. International Journal of Climatology, 2018, 38, 5430-5440.	3.5	5
59	Dataset Reduction Techniques to Speed Up SVD Analyses on Big Geo-Datasets. ISPRS International Journal of Geo-Information, 2019, 8, 55.	2.9	5
60	Exploring differences in spatial patterns and temporal trends of phenological models at continental scale using gridded temperature time-series. International Journal of Biometeorology, 2020, 64, 409-421.	3.0	5
61	CLUSTERING-BASED APPROACHES TO THE EXPLORATION OF SPATIO-TEMPORAL DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W7, 1387-1391.	0.2	5
62	Embedding artificial intelligence in society: looking beyond the EU AI master plan using the culture cycle. AI and Society, 2023, 38, 1465-1484.	4.6	5
63	Development of an Open-Source Toolbox for the Analysis and Visualization of Remotely Sensed Time Series. Cartographica, 2011, 46, 227-238.	0.4	4
64	Checking the Consistency of Volunteered Phenological Observations While Analysing Their Synchrony. ISPRS International Journal of Geo-Information, 2018, 7, 487.	2.9	4
65	Physically-based retrievals of Norway spruce canopy variables from very high spatial resolution hyperspectral data. , 2007, , .		3
66	Identifying crops in smallholder farms using time series of WorldView-2 images. , 2017, , .		3
67	Exploring Spring Onset at Continental Scales: Mapping Phenoregions and Correlating Temperature and Satellite-Based Phenometrics. IEEE Transactions on Big Data, 2020, 6, 583-593.	6.1	3
68	Characterizing the spatial and temporal variability of biophysical variables of a wheat crop using hyper-spectral measurements. , 0, , .		2
69	Assessment of long-term vicarious calibration efforts of MERIS on land product quality. , 2004, 5570, 363.		2
70	Mining Frequent Spatio-Temporal Patterns in Wind Speed and Direction. Lecture Notes in Geoinformation and Cartography, 2014, , 143-161.	1.0	2
71	On the use of guided regularized random forests to identify crops in smallholder farm fields. , 2017, , .		2
72	Use of Guided Regularized Random Forest for Biophysical Parameter Retrieval. , 2018, , .		2

Use of Guided Regularized Random Forest for Biophysical Parameter Retrieval. , 2018, , . 72

#	ARTICLE	IF	CITATIONS
73	Integrating support vector machines and random forests to classify crops in time series of Worldview-2 images. , 2017, , .		2
74	Area and Feature Guided Regularised Random Forest: a novel method for predictive modelling of binary phenomena. The case of illegal landfill in Canary Island. International Journal of Geographical Information Science, 2022, 36, 2473-2495.	4.8	2
75	Introducing co-clustering for hyperspectral image analysis. , 2015, , .		1
76	A WEB-BASED INTERACTIVE PLATFORM FOR CO-CLUSTERING SPATIO-TEMPORAL DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W7, 175-179.	0.2	1
77	Possibilities of MERIS for sub-pixel regional land cover mapping. , 2005, , .		0
78	Last Minutes. Massachusetts Review, 2015, 56, 43-43.	0.0	0
79	Using self-organising maps to explore ozone profile validation results – SCIAMACHY limb compared to ground-based lidar observations. Atmospheric Measurement Techniques, 2015, 8, 1951-1963.	3.1	Ο
80	A Spark-Based Platform to Extract Phenological Information from Satellite Images. , 2018, , .		0
81	GIS-based Analysis for Petroleum Exploration - Case Study of Northern South America. , 2012, , .		Ο
82	CGC: a Scalable Python Package for Co- and Tri-Clustering of Geodata Cubes. Journal of Open Source Software, 2022, 7, 4032.	4.6	0