Marios Tsezos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3242088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lead removal at trace concentrations from water by inactive yeast cells. Communications Earth & Environment, 2022, 3, .	6.8	8
2	Fractionation and leachability of Fe, Zn, Cu and Ni in the sludge from a sulphate-reducing bioreactor treating metal-bearing wastewater. Environmental Science and Pollution Research, 2018, 25, 35883-35894.	5.3	19
3	Influence of Saharan Dust Transport Events on PM2.5 Concentrations and Composition over Athens. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	35
4	Biosorption: A Mechanistic Approach. Advances in Biochemical Engineering/Biotechnology, 2013, 141, 173-209.	1.1	8
5	Composition and Mass Closure of PM2.5 in Urban Environment (Athens, Greece). Aerosol and Air Quality Research, 2013, 13, 72-82.	2.1	50
6	PM10 composition during an intense Saharan dust transport event over Athens (Greece). Science of the Total Environment, 2011, 409, 4361-4372.	8.0	66
7	An Experimental and Modelling Study of Cu2+ Binding on Humic Acids at Various Solution Conditions. Application of the NICA-Donnan Model. Water, Air, and Soil Pollution, 2011, 218, 487-497.	2.4	23
8	Metal precipitation in an ethanol-fed, fixed-bed sulphate-reducing bioreactor. Journal of Hazardous Materials, 2011, 189, 677-684.	12.4	38
9	Humic Acids Copper Binding Following Their Photochemical Alteration by Simulated Solar Light. Aquatic Geochemistry, 2010, 16, 207-218.	1.3	12
10	Metal - Microbes Interactions: beyond Environmental Protection. Advanced Materials Research, 2009, 71-73, 527-532.	0.3	23
11	An experimental and modeling study of humic acid concentration effect on H+ binding: Application of the NICA–Donnan model. Journal of Colloid and Interface Science, 2009, 339, 330-335.	9.4	13
12	Photolytic and photocatalytic alterations of humic substances in UV (254 nm) and Solar Cocentric Parabolic Concentrator (CPC) reactors. Desalination, 2009, 248, 843-851.	8.2	12
13	Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor. Journal of Hazardous Materials, 2008, 153, 514-524.	12.4	28
14	Biological Removal of Ions: Principles and Applications. Advanced Materials Research, 2007, 20-21, 589-596.	0.3	8
15	A Study of the Operating Parameters of a Sulphate-Reducing Fixed-Bed Reactor for the Treatment of Metal-Bearing Wastewater. Advanced Materials Research, 2007, 20-21, 230-234.	0.3	11
16	A systematic study of chromium solubility in the presence of organic matter: consequences for the treatment of chromiumâ€containing wastewater. Journal of Chemical Technology and Biotechnology, 2007, 82, 802-808.	3.2	37
17	Modelling of microbial metabolism stoichiometry: Application in bioleaching processes. Hydrometallurgy, 2006, 83, 29-34.	4.3	12
18	Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter. BioMetals 2003 16 567-581	4.1	26

MARIOS TSEZOS

#	Article	IF	CITATIONS
19	Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy, 2003, 71, 235-241.	4.3	74
20	The mechanism of metals precipitation by biologically generated alkalinity in biofilm reactors. Water Research, 2003, 37, 3843-3854.	11.3	44
21	Treatment of rinsing water from electroless nickel plating with a biologically active moving-bed sand filter. Hydrometallurgy, 2001, 59, 383-393.	4.3	31
22	Application of simplified rapid equilibrium models in simulating experimental breakthrough curves from fixed bed biosorption reactors. Hydrometallurgy, 2001, 59, 395-406.	4.3	37
23	Modelling of fixed bed biosorption columns in continuous metal ion removal processes. The case of single solute local equilibrium. Process Metallurgy, 1999, 9, 429-448.	0.1	4
24	Biosorption of metals. The experience accumulated and the outlook for technology development. Process Metallurgy, 1999, 9, 171-173.	0.1	8
25	The â€`behaviour' of five metal biosorbing and bioprecipitating bacterial strains, inoculated in a moving-bed sand filter. Process Metallurgy, 1999, , 373-382.	0.1	3
26	Mechanism of palladium biosorption by microbial biomass. The effects of metal ionic speciation and solution co-ions. Process Metallurgy, 1999, 9, 449-462.	0.1	6
27	Removal of nickel from plating rinsing water with a moving-bed sand filter inoculated with metal sorbing and precipitating bacteria. Process Metallurgy, 1999, 9, 383-392.	0.1	7
28	Recent advances in the mechanistic understanding of metal mobility and interaction with microbial biomass. Research in Microbiology, 1997, 148, 515-517.	2.1	4
29	Biosorption sites of selected metals using electron microscopy. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 118, 481-487.	0.6	27
30	lonic Competition Effects in a Continuous Uranium Biosorptive Recovery Process. Journal of Chemical Technology and Biotechnology, 1997, 70, 198-206.	3.2	12
31	Mechanism of aluminum interference on uranium biosorption by Rhizopus arrhizus. , 1997, 55, 16-27.		50
32	A study of the effects of competing ions on the biosorption of metals. International Biodeterioration and Biodegradation, 1996, 38, 19-29.	3.9	67
33	A systematic study on equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. International Biodeterioration and Biodegradation, 1995, 35, 129-153.	3.9	69
34	The Use of a Mathematical Model for the Study of the Important Parameters in Immobilized Biomass Biosorption. Journal of Chemical Technology and Biotechnology, 1992, 53, 1-12.	3.2	20
35	A mechanistic study on the fate of malathion following interaction with microbial biomass. Water Research, 1991, 25, 1039-1046.	11.3	14
36	Study on the kinetics of hazardous pollutants adsorption and desorption by biomass: Mechanistic considerations. Journal of Chemical Technology and Biotechnology, 1991, 50, 507-521.	3.2	19

MARIOS TSEZOS

#	Article	IF	CITATIONS
37	The Pilot Plant Testing of the Continuous Extraction of Radionuclides Using Immobilized Biomass. , 1991, , 249-260.		3
38	An investigation of engineering parameters for the use of immobilized biomass particles in biosorption. Journal of Chemical Technology and Biotechnology, 1990, 48, 29-39.	3.2	58
39	The continuous recovery of uranium from biologically leached solutions using immobilized biomass. Biotechnology and Bioengineering, 1989, 34, 10-17.	3.3	75
40	Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass. Water Research, 1989, 23, 561-568.	11.3	185
41	A batch reactor mass transfer kinetic model for immobilized biomass biosorption. Biotechnology and Bioengineering, 1988, 32, 545-553.	3.3	72
42	Significance of biosorption for the hazardous organics removal efficiency of a biological reactor. Water Research, 1988, 22, 391-394.	11.3	23
43	The selectivity of biosorption of hazardous organics by microbial biomass. Water Research, 1988, 22, 1245-1251.	11.3	24
44	Removal of Hazardous Organic Pollutants by Adsorption on Microbial Biomass. Water Science and Technology, 1987, 19, 409-416.	2.5	50
45	The elution of radium adsorbed by microbial bioman. The Chemical Engineering Journal, 1987, 34, B57-B64.	0.3	11
46	The use of immobilised biomass to remove and recover radium from Elliot Lake uranium tailing streams. Hydrometallurgy, 1987, 17, 357-368.	4.3	20
47	A further insight into the mechanism of biosorption of metals, by examining chitin epr spectra. Talanta, 1986, 33, 225-232.	5.5	25
48	The adsorption of chloroethanes by microbial biomass. Water Research, 1986, 20, 851-858.	11.3	39
49	The kinetics of radium biosorption. The Chemical Engineering Journal, 1986, 33, B35-B41.	0.3	17
50	Adsorptive treatment with microbial biomass of 226 Ra-containing waste waters. The Chemical Engineering Journal, 1986, 32, B29-B38.	0.3	7
51	Adsorption of radium-226 from solution by the container walls. Canadian Journal of Chemical Engineering, 1986, 64, 346-348.	1.7	3
52	The Selective Extraction of Metals from Solution by Micro-Organisms. A Brief Overview. Canadian Metallurgical Quarterly, 1985, 24, 141-144.	1.2	44
53	The Selective Extraction of Metals from Solution by Micro-Organisms. A Brief Overview. Canadian Metallurgical Quarterly, 1985, 24, 141-144.	1.2	9
54	Extraction of uranium from sea water using biological origin adsorbents. Canadian Journal of Chemical Engineering, 1984, 62, 559-561.	1.7	19

MARIOS TSEZOS

#	Article	lF	CITATIONS
55	Recovery of uranium from biological adsorbents?desorption equilibrium. Biotechnology and Bioengineering, 1984, 26, 973-981.	3.3	115
56	Adsorption of radium-226 by biological origin absorbents. Biotechnology and Bioengineering, 1983, 25, 201-215.	3.3	76
57	The role of chitin in uranium adsorption byR. arrhizus. Biotechnology and Bioengineering, 1983, 25, 2025-2040.	3.3	122
58	Recovery of Strategic Elements by Biosorption. Annals of the New York Academy of Sciences, 1983, 413, 310-312.	3.8	7
59	The mechanism of uranium biosorption byRhizopus arrhizus. Biotechnology and Bioengineering, 1982, 24, 385-401.	3.3	337
60	The mechanism of thorium biosorption byRhizopus arrhizus. Biotechnology and Bioengineering, 1982, 24, 955-969.	3.3	138
61	Biosorption of uranium and thorium. Biotechnology and Bioengineering, 1981, 23, 583-604.	3.3	448
62	A method for the calculation of biological film volume in a fluidized bed biological reactor. Water Research, 1980, 14, 689-693.	11.3	18
63	Dynamic Modelling of Biofilm Reactors with Immobilised Sulfate-Reducing Bacteria. Advanced Materials Research, 0, 1130, 539-542.	0.3	1