Mingjun Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/324154/publications.pdf

Version: 2024-02-01

		361413	395702
62	1,318	20	33
papers	citations	h-index	g-index
			1752
66	66	66	1753
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures. ACS Nano, 2022, 16, 4059-4071.	14.6	12
2	Mechanism of INSR clustering with insulin activation and resistance revealed by super-resolution imaging. Nanoscale, 2022, 14, 7747-7755.	5.6	4
3	CDCP1: A promising diagnostic biomarker and therapeutic target for human cancer. Life Sciences, 2022, 301, 120600.	4.3	5
4	Spatiotemporal tracking of the transport of RNA nano-drugs: from transmembrane to intracellular delivery. Nanoscale, 2022, 14, 8919-8928.	5.6	1
5	Membrane protein density determining membrane fusion revealed by dynamic fluorescence imaging. Talanta, 2021, 226, 122091.	5.5	3
6	The role of CD47-SIRPÎ \pm immune checkpoint in tumor immune evasion and innate immunotherapy. Life Sciences, 2021, 273, 119150.	4.3	45
7	Single-molecule Force Microscopy: A Powerful Tool for Studying the Mechanical Properties of Cell Membranes. Current Analytical Chemistry, 2021, 17, .	1.2	O
8	Quantitatively mapping the interaction of HER2 and EGFR on cell membranes with peptide probes. Nanoscale, 2021, 13, 17629-17637.	5.6	4
9	Insight into the Different Channel Proteins of Human Red Blood Cell Membranes Revealed by Combined dSTORM and AFM Techniques. Analytical Chemistry, 2021, 93, 14113-14120.	6.5	5
10	Cellâ€Tractionâ€Triggered Onâ€Demand Electrical Stimulation for Neuronâ€Like Differentiation. Advanced Materials, 2021, 33, e2106317.	21.0	49
11	Variation of Trop2 on non-small-cell lung cancer and normal cell membranes revealed by super-resolution fluorescence imaging. Talanta, 2020, 207, 120312.	5.5	6
12	Developing substrate-based small molecule fluorescent probes for super-resolution fluorescent imaging of various membrane transporters. Nanoscale Horizons, 2020, 5, 523-529.	8.0	11
13	Quantitatively Mapping the Assembly Pattern of EpCAM on Cell Membranes with Peptide Probes. Analytical Chemistry, 2020, 92, 1865-1873.	6.5	24
14	Measurement of mechanical properties of naked cell membranes using atomic force microscope puncture test. Talanta, 2020, 210, 120637.	5.5	10
15	Application of an inhibitor-based probe to reveal the distribution of membrane PSMA in dSTORM imaging. Chemical Communications, 2020, 56, 13241-13244.	4.1	2
16	Development of small molecule inhibitor-based fluorescent probes for highly specific super-resolution imaging. Nanoscale, 2020, 12, 21591-21598.	5.6	13
17	Correlative dual-color dSTORM/AFM reveals protein clusters at the cytoplasmic side of human bronchial epithelium membranes. Nanoscale, 2020, 12, 9950-9957.	5.6	11
18	Entry Dynamics of Single Ebola Virus Revealed by Force Tracing. ACS Nano, 2020, 14, 7046-7054.	14.6	19

#	Article	IF	Citations
19	Size-Dependent Transmembrane Transport of Gold Nanocages. ACS Omega, 2020, 5, 9864-9869.	3.5	5
20	Mechanical force regulation of YAP by F-actin and GPCR revealed by super-resolution imaging. Nanoscale, 2020, 12, 2703-2714.	5.6	34
21	Palladiumâ€Catalyzed Crossâ€Coupling of Aryl Thioacetates and Chloro(hetero)arenes. Asian Journal of Organic Chemistry, 2020, 9, 214-217.	2.7	3
22	Aptamer AS1411 utilized for super-resolution imaging of nucleolin. Talanta, 2020, 217, 121037.	5.5	16
23	Structural Mechanism Analysis of Orderly and Efficient Vesicle Transport by High-Resolution Imaging and Fluorescence Tracking. Analytical Chemistry, 2020, 92, 6555-6563.	6.5	6
24	Mechanistic Insights into Trop2 Clustering on Lung Cancer Cell Membranes Revealed by Super-resolution Imaging. ACS Omega, 2020, 5, 32456-32465.	3.5	4
25	Super-resolution imaging of cancer-associated carbohydrates using aptamer probes. Nanoscale, 2019, 11, 14879-14886.	5.6	10
26	Atomic Force Microscopy for Cell Membrane Investigation. Methods in Molecular Biology, 2019, 2000, 361-372.	0.9	2
27	The role of resveratrol in bone marrowâ€derived mesenchymal stem cells from patients with osteoporosis. Journal of Cellular Biochemistry, 2019, 120, 16634-16642.	2.6	26
28	Using an RNA aptamer probe for super-resolution imaging of native EGFR. Nanoscale Advances, 2019, 1, 291-298.	4.6	19
29	Aptamer-recognized carbohydrates on the cell membrane revealed by super-resolution microscopy. Nanoscale, 2018, 10, 7457-7464.	5.6	18
30	The structure and function of cell membranes studied by atomic force microscopy. Seminars in Cell and Developmental Biology, 2018, 73, 31-44.	5.0	38
31	Enantiomeric Effect of d-Amino Acid Substitution on the Mechanism of Action of α-Helical Membrane-Active Peptides. International Journal of Molecular Sciences, 2018, 19, 67.	4.1	14
32	Evaluating the efficacy of the anticancer drug cetuximab by atomic force microscopy. RSC Advances, 2018, 8, 21793-21797.	3.6	10
33	Mechanistic insights into GLUT1 activation and clustering revealed by super-resolution imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7033-7038.	7.1	56
34	Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Research, 2017, 27, 505-525.	12.0	38
35	Clustered localization of STAT3 during the cell cycle detected by super-resolution fluorescence microscopy. Methods and Applications in Fluorescence, 2017, 5, 024004.	2.3	5
36	Cell contact and pressure control of YAP localization and clustering revealed by super-resolution imaging. Nanoscale, 2017, 9, 16993-17003.	5.6	16

#	Article	IF	CITATIONS
37	Progress in the Correlative Atomic Force Microscopy and Optical Microscopy. Sensors, 2017, 17, 938.	3.8	39
38	Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy. Scientific Reports, 2016, 6, 29145.	3.3	12
39	Variation in Carbohydrates between Cancer and Normal Cell Membranes Revealed by Superâ€Resolution Fluorescence Imaging. Advanced Science, 2016, 3, 1600270.	11.2	42
40	Studying the dynamic mechanism of transporting a single drug carrier-polyamidoamine dendrimer through cell membranes by force tracing. Nanoscale, 2016, 8, 18027-18031.	5.6	15
41	Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Scientific Reports, 2016, 6, 30247.	3.3	17
42	Enhanced dSTORM imaging using fluorophores interacting with cucurbituril. Science China Chemistry, 2016, 59, 848-852.	8.2	9
43	Mechanistic insights into the distribution of carbohydrate clusters on cell membranes revealed by dSTORM imaging. Nanoscale, 2016, 8, 13611-13619.	5.6	11
44	Super-resolution imaging of STAT3 cellular clustering during nuclear transport. RSC Advances, 2016, 6, 54597-54607.	3.6	4
45	Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging. Scientific Reports, 2015, 5, 9045.	3.3	15
46	Electrochemical Modulation of the Fluorescence of Cyanine Dye Cy5. Electroanalysis, 2015, 27, 1817-1822.	2.9	3
47	Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging. Nanoscale, 2015, 7, 2511-2519.	5.6	78
48	Ultrafast Tracking of a Single Live Virion During the Invagination of a Cell Membrane. Small, 2015, 11, 2782-2788.	10.0	27
49	Real-time Imaging of Rabies Virus Entry into Living Vero cells. Scientific Reports, 2015, 5, 11753.	3.3	31
50	Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches. PLoS ONE, 2014, 9, e91595.	2.5	31
51	Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes. Molecules and Cells, 2014, 37, 592-597.	2.6	10
52	Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Research, 2014, 24, 959-976.	12.0	109
53	Mapping the resting and stimulated EGFR in cell membranes with topography and recognition imaging. Analytical Methods, 2014, 6, 7689-7694.	2.7	6
54	Entry of a Novel Marine DNA Virus, Singapore Grouper Iridovirus, into Host Cells Occurs via Clathrin-Mediated Endocytosis and Macropinocytosis in a pH-Dependent Manner. Journal of Virology, 2014, 88, 13047-13063.	3.4	108

#	Article	IF	CITATIONS
55	Studying the membrane structure of chicken erythrocytes by in situ atomic force microscopy. Analytical Methods, 2014, 6, 8115-8119.	2.7	7
56	Detection of carbohydrates on the surface of cancer and normal cells by topography and recognition imaging. Chemical Communications, 2013, 49, 2980.	4.1	15
57	High-efficiency localization of Na+–K+ ATPases on the cytoplasmic side by direct stochastic optical reconstruction microscopy. Nanoscale, 2013, 5, 11582.	5.6	23
58	A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells. Nanoscale, 2013, 5, 3226.	5.6	27
59	High resolution imaging of mitochondrial membranes by in situ atomic force microscopy. RSC Advances, 2013, 3, 708-712.	3.6	21
60	Direct Evidence of Lipid Rafts by in situ Atomic Force Microscopy. Small, 2012, 8, 1243-1250.	10.0	65
61	Recording force events of single quantum-dot endocytosis. Chemical Communications, 2011, 47, 3377.	4.1	35
62	Locating the Band III protein in quasi-native cell membranes. Analytical Methods, 2010, 2, 805.	2.7	13