
Haike Antelmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3241242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidation of bacillithiol during killing of <i>Staphylococcus aureus</i> USA300 inside neutrophil phagosomes. Journal of Leukocyte Biology, 2022, 112, 591-605.	3.3	7
2	Thiol targets in drug development to combat bacterial infections. , 2022, , 679-711.		0
3	Carbon Source-Dependent Reprogramming of Anaerobic Metabolism in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2021, 203, .	2.2	17
4	Allicin, the Odor of Freshly Crushed Garlic: A Review of Recent Progress in Understanding Allicin's Effects on Cells. Molecules, 2021, 26, 1505.	3.8	40
5	Large-scale ratcheting in a bacterial DEAH/RHA-type RNA helicase that modulates antibiotics susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
6	The Antimicrobial Activity of the AGXX® Surface Coating Requires a Small Particle Size to Efficiently Kill Staphylococcus aureus. Frontiers in Microbiology, 2021, 12, 731564.	3.5	7
7	Thiol-based redox switches in the major pathogen <i>Staphylococcus aureus</i> . Biological Chemistry, 2021, 402, 333-361.	2.5	31
8	The two-Cys-type TetR repressor GbaA confers resistance under disulfide and electrophile stress in Staphylococcus aureus. Free Radical Biology and Medicine, 2021, 177, 120-131.	2.9	8
9	The Effect of Allicin on the Proteome of SARS-CoV-2 Infected Calu-3 Cells. Frontiers in Microbiology, 2021, 12, 746795.	3.5	24
10	The redox-sensing MarR-type repressor HypS controls hypochlorite and antimicrobial resistance in Mycobacterium smegmatis. Free Radical Biology and Medicine, 2020, 147, 252-261.	2.9	20
11	The plant-derived naphthoquinone lapachol causes an oxidative stress response in Staphylococcus aureus. Free Radical Biology and Medicine, 2020, 158, 126-136.	2.9	26
12	The Industrial Organism Corynebacterium glutamicum Requires Mycothiol as Antioxidant to Resist Against Oxidative Stress in Bioreactor Cultivations. Antioxidants, 2020, 9, 969.	5.1	10
13	The alarmone (p)ppGpp confers tolerance to oxidative stress during the stationary phase by maintenance of redox and iron homeostasis in Staphylococcus aureus. Free Radical Biology and Medicine, 2020, 161, 351-364.	2.9	27
14	Method for measurement of bacillithiol redox potential changes using the Brx-roGFP2 redox biosensor in Staphylococcus aureus. MethodsX, 2020, 7, 100900.	1.6	8
15	Redox regulation by reversible protein S-thiolation in Gram-positive bacteria. Redox Biology, 2019, 20, 130-145.	9.0	83
16	The MarR-Type Repressor MhqR Confers Quinone and Antimicrobial Resistance in <i>Staphylococcus aureus</i> . Antioxidants and Redox Signaling, 2019, 31, 1235-1252.	5.4	31
17	Staphylococcus aureus Uses the Bacilliredoxin (BrxAB)/Bacillithiol Disulfide Reductase (YpdA) Redox Pathway to Defend Against Oxidative Stress Under Infections. Frontiers in Microbiology, 2019, 10, 1355.	3.5	31
18	Utilizing redox-sensitive GFP fusions to detect in vivo redox changes in a genetically engineered prokaryote. Redox Biology, 2019, 26, 101280.	9.0	16

#	Article	IF	CITATIONS
19	An essential thioredoxin-type protein of Trypanosoma brucei acts as redox-regulated mitochondrial chaperone. PLoS Pathogens, 2019, 15, e1008065.	4.7	13
20	Staphylococcus aureus responds to allicin by global S-thioallylation – Role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress. Free Radical Biology and Medicine, 2019, 139, 55-69.	2.9	65
21	The Disulfide Stress Response and Protein S-thioallylation Caused by Allicin and Diallyl Polysulfanes in Bacillus subtilis as Revealed by Transcriptomics and Proteomics. Antioxidants, 2019, 8, 605.	5.1	23
22	Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum. Redox Biology, 2019, 20, 514-525.	9.0	25
23	The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects. Free Radical Biology and Medicine, 2019, 131, 144-153.	2.9	61
24	Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria. Free Radical Biology and Medicine, 2018, 128, 84-96.	2.9	26
25	The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus. Redox Biology, 2018, 15, 557-568.	9.0	38
26	Protein <i>S</i> -Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in <i>Staphylococcus aureus</i> Under Hypochlorite Stress. Antioxidants and Redox Signaling, 2018, 28, 410-430.	5.4	58
27	The Role of Bacillithiol in Gram-Positive <i>Firmicutes</i> . Antioxidants and Redox Signaling, 2018, 28, 445-462.	5.4	90
28	Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in <i>Staphylococcus aureus</i> . Antioxidants and Redox Signaling, 2018, 29, 615-636.	5.4	51
29	The AGXX® Antimicrobial Coating Causes a Thiol-Specific Oxidative Stress Response and Protein S-bacillithiolation in Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 3037.	3.5	33
30	Thiol-Redox Proteomics to Study Reversible Protein Thiol Oxidations in Bacteria. Methods in Molecular Biology, 2018, 1841, 261-275.	0.9	5
31	Comparative Secretome Analyses of Human and Zoonotic Staphylococcus aureus Isolates CC8, CC22, and CC398. Molecular and Cellular Proteomics, 2018, 17, 2412-2433.	3.8	29
32	Crystal Structure of the Escherichia coli DExH-Box NTPase HrpB. Structure, 2018, 26, 1462-1473.e4.	3.3	10
33	Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress. Scientific Reports, 2017, 7, 1195.	3.3	47
34	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
35	The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress. Scientific Reports, 2017, 7, 5020.	3.3	24
36	Real-Time Imaging of the Bacillithiol Redox Potential in the Human Pathogen <i>Staphylococcus aureus</i> Using a Genetically Encoded Bacilliredoxin-Fused Redox Biosensor. Antioxidants and Redox Signaling, 2017, 26, 835-848.	5.4	53

#	Article	IF	CITATIONS
37	Contribution of the Twin Arginine Translocation system to the exoproteome of Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 27675.	3.3	39
38	The <i>E. coli</i> sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. MicrobiologyOpen, 2015, 4, 66-83.	3.0	87
39	Genome-Wide Analysis of Phosphorylated PhoP Binding to Chromosomal DNA Reveals Several Novel Features of the PhoPR-Mediated Phosphate Limitation Response in Bacillus subtilis. Journal of Bacteriology, 2015, 197, 1492-1506.	2.2	23
40	Thiol-based redox switches in prokaryotes. Biological Chemistry, 2015, 396, 415-444.	2.5	148
41	Oxidative Stress Responses and Redox Signalling Mechanisms in Bacillus subtilis and Staphylococcus aureus. , 2015, , 249-274.		3
42	Redox regulation by reversible protein S-thiolation in bacteria. Frontiers in Microbiology, 2015, 6, 187.	3.5	146
43	A thiol switch opens the gate. Nature Chemical Biology, 2015, 11, 4-5.	8.0	4
44	Archaeal Ubiquitin-like SAMP3 is Isopeptide-linked to Proteins via a UbaA-dependent Mechanism. Molecular and Cellular Proteomics, 2014, 13, 220-239.	3.8	25
45	Protein <i>S-</i> Mycothiolation Functions as Redox-Switch and Thiol Protection Mechanism in <i>Corynebacterium glutamicum</i> Under Hypochlorite Stress. Antioxidants and Redox Signaling, 2014, 20, 589-605.	5.4	68
46	Redox Regulation in <i>Bacillus subtilis</i> : The Bacilliredoxins BrxA(YphP) and BrxB(YqiW) Function in De-Bacillithiolation of <i>S</i> -Bacillithiolated OhrR and MetE. Antioxidants and Redox Signaling, 2014, 21, 357-367.	5.4	57
47	A Highly Unstable Transcript Makes CwlO D,L-Endopeptidase Expression Responsive to Growth Conditions in Bacillus subtilis. Journal of Bacteriology, 2014, 196, 237-247.	2.2	18
48	Regulation of Bacillus subtilis bacillithiol biosynthesis operons by Spx. Microbiology (United) Tj ETQq0 0 0 rgBT /	Overlock I	10 Tf 50 302 ⁻ 42
49	Distribution and infection-related functions of bacillithiol in Staphylococcus aureus. International Journal of Medical Microbiology, 2013, 303, 114-123.	3.6	46
50	Molecular architecture of <i>Streptococcus pneumoniae</i> surface thioredoxinâ€fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Molecular Medicine, 2013, 5, 1852-1870.	6.9	99
51	Polysulfides Link H ₂ S to Protein Thiol Oxidation. Antioxidants and Redox Signaling, 2013, 19, 1749-1765.	5.4	410
52	<i>S-</i> Bacillithiolation Protects Conserved and Essential Proteins Against Hypochlorite Stress in <i>Firmicutes</i> Bacteria. Antioxidants and Redox Signaling, 2013, 18, 1273-1295.	5.4	88
53	Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter. Journal of Bacteriology, 2013, 195, 4174-4186.	2.2	99
54	The FsrA sRNA and FbpB Protein Mediate the Iron-Dependent Induction of the Bacillus subtilis LutABC Iron-Sulfur-Containing Oxidases. Journal of Bacteriology, 2012, 194, 2586-2593.	2.2	53

#	Article	IF	CITATIONS
55	Functional Analyses of Mycobacterial Lipoprotein Diacylglyceryl Transferase and Comparative Secretome Analysis of a Mycobacterial <i>lgt</i> Mutant. Journal of Bacteriology, 2012, 194, 3938-3949.	2.2	30
56	A Global Investigation of the Bacillus subtilis Iron-Sparing Response Identifies Major Changes in Metabolism. Journal of Bacteriology, 2012, 194, 2594-2605.	2.2	72
57	Inhibition of Acetyl Phosphate-dependent Transcription by an Acetylatable Lysine on RNA Polymerase. Journal of Biological Chemistry, 2012, 287, 32147-32160.	3.4	53
58	Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR. Nucleic Acids Research, 2012, 40, 4178-4192.	14.5	54
59	Bacterial mechanisms of reversible protein <scp> <i>S</i></scp> â€ŧhiolation: structural and mechanistic insights into mycoredoxins. Molecular Microbiology, 2012, 86, 759-764.	2.5	9
60	Thiol-Based Redox Switches and Gene Regulation. Antioxidants and Redox Signaling, 2011, 14, 1049-1063.	5.4	326
61	Environmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis. PLoS ONE, 2011, 6, e18140.	2.5	36
62	Involvement of protein acetylation in glucoseâ€induced transcription of a stressâ€responsive promoter. Molecular Microbiology, 2011, 81, 1190-1204.	2.5	109
63	S-Bacillithiolation Protects Against Hypochlorite Stress in Bacillus subtilis as Revealed by Transcriptomics and Redox Proteomics. Molecular and Cellular Proteomics, 2011, 10, M111.009506.	3.8	154
64	Functional analysis of the sortase YhcS in <i>Bacillus subtilis</i> . Proteomics, 2011, 11, 3905-3913.	2.2	9
65	Reduction in Membrane Phosphatidylglycerol Content Leads to Daptomycin Resistance in Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 2011, 55, 4326-4337.	3.2	110
66	Phenotype Enhancement Screen of a Regulatory spx Mutant Unveils a Role for the ytpQ Gene in the Control of Iron Homeostasis. PLoS ONE, 2011, 6, e25066.	2.5	12
67	Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Applied Microbiology and Biotechnology, 2010, 87, 2227-2235.	3.6	38
68	The redoxâ€sensing regulator YodB senses quinones and diamide <i>via</i> a thiolâ€disulfide switch in <i>Bacillus subtilis</i> . Proteomics, 2010, 10, 3155-3164.	2.2	35
69	The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen <i>Streptomyces scabies</i> . Molecular Microbiology, 2010, 77, 252-271.	2.5	71
70	Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6482-6486.	7.1	214
71	Synthetic Effects of <i>secG</i> and <i>secY2</i> Mutations on Exoproteome Biogenesis in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2010, 192, 3788-3800.	2.2	38
72	The Paralogous MarR/DUF24-Family Repressors YodB and CatR Control Expression of the Catechol Dioxygenase CatE in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2010, 192, 4571-4581.	2.2	31

#	Article	IF	CITATIONS
73	The Yvrl Alternative σ Factor Is Essential for Acid Stress Induction of Oxalate Decarboxylase in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2009, 191, 931-939.	2.2	29
74	Diamide Triggers Mainly S Thiolations in the Cytoplasmic Proteomes of <i>Bacillus subtilis</i> and <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2009, 191, 7520-7530.	2.2	66
75	MscL of <i>Bacillus subtilis</i> prevents selective release of cytoplasmic proteins in a hypotonic environment. Proteomics, 2009, 9, 1033-1043.	2.2	9
76	Overflow of a hyperâ€produced secretory protein from the <i>Bacillus</i> Sec pathway into the Tat pathway for protein secretion as revealed by proteogenomics. Proteomics, 2009, 9, 1018-1032.	2.2	22
77	Genomeâ€wide responses to carbonyl electrophiles in <i>Bacillus subtilis</i> : control of the thiolâ€dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerRâ€family regulator YraB (AdhR). Molecular Microbiology, 2009, 71, 876-894.	2.5	87
78	Cell Physiology and Protein Secretion of <i>Bacillus licheniformis</i> Compared to <i> Bacillus subtilis</i> . Journal of Molecular Microbiology and Biotechnology, 2009, 16, 53-68.	1.0	28
79	Genetic or chemical protease inhibition causes significant changes in the <i>Bacillus subtilis</i> exoproteome. Proteomics, 2008, 8, 2704-2713.	2.2	28
80	Gelâ€based proteomics of Gramâ€positive bacteria: A powerful tool to address physiological questions. Proteomics, 2008, 8, 4958-4975.	2.2	54
81	Regulation of quinone detoxification by the thiol stress sensing DUF24/MarRâ€like repressor, YodB in <i>Bacillus subtilis</i> . Molecular Microbiology, 2008, 67, 1108-1124.	2.5	70
82	Depletion of thiolâ€containing proteins in response to quinones in <i>Bacillus subtilis</i> . Molecular Microbiology, 2008, 69, 1513-1529.	2.5	85
83	Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in <i>Bacillus subtilis</i> . Expert Review of Proteomics, 2008, 5, 77-90.	3.0	46
84	The <i>Bacillus subtilis</i> iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11927-11932.	7.1	205
85	The density of negative charge in the cell wall influences two-component signal transduction in Bacillus subtilis. Microbiology (United Kingdom), 2007, 153, 2126-2136.	1.8	29
86	The Phosphorus Source Phytate Changes the Composition of the Cell Wall Proteome inBacillussubtilis. Journal of Proteome Research, 2007, 6, 897-903.	3.7	22
87	Global Gene Expression Profiling of <i>Bacillus subtilis</i> in Response to Ammonium and Tryptophan Starvation as Revealed by Transcriptome and Proteome Analysis. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 121-130.	1.0	20
88	Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 849, 129-140.	2.3	57
89	The proteome and transcriptome analysis ofBacillus subtilis in response to salicylic acid. Proteomics, 2007, 7, 698-710.	2.2	49
90	Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds inBacillus subtilis. Proteomics, 2007, 7, 1391-1408.	2.2	48

#	Article	IF	CITATIONS
91	Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Molecular Microbiology, 2007, 64, 984-999.	2.5	74
92	The MarRâ€type repressor MhqR (YkvE) regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2â€methylhydroquinone and catechol in <i>Bacillus subtilis</i> . Molecular Microbiology, 2007, 66, 40-54.	2.5	67
93	Role of the Fur Regulon in Iron Transport in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2006, 188, 3664-3673.	2.2	206
94	Proteomic dissection of potential signal recognition particle dependence in protein secretion byBacillus subtilis. Proteomics, 2006, 6, 3636-3648.	2.2	47
95	Proteome signatures for stress and starvation inBacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics, 2006, 6, 4565-4585.	2.2	78
96	Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environmental Microbiology, 2006, 8, 1408-1427.	3.8	95
97	The NAD synthetase NadE (OutB) of Bacillus subtilis is a σB-dependent general stress protein. FEMS Microbiology Letters, 2006, 153, 405-409.	1.8	12
98	pSM19035-encoded ζ toxin induces stasis followed by death in a subpopulation of cells. Microbiology (United Kingdom), 2006, 152, 2365-2379.	1.8	54
99	A Disulfide Bond-Containing Alkaline Phosphatase Triggers a BdbC-Dependent Secretion Stress Response in Bacillus subtilis. Applied and Environmental Microbiology, 2006, 72, 6876-6885.	3.1	28
100	Proteomic Survey through Secretome ofBacillus subtilis. Methods of Biochemical Analysis, 2005, , 179-208.	0.2	18
101	The extracellular and cytoplasmic proteomes of the non-virulentBacillus anthracis strain UM23C1-2. Proteomics, 2005, 5, 3684-3695.	2.2	54
102	Genes Involved in SkfA Killing Factor Production Protect a Bacillus subtilis Lipase against Proteolysis. Applied and Environmental Microbiology, 2005, 71, 1899-1908.	3.1	19
103	Structure-Function Analysis of PrsA Reveals Roles for the Parvulin-like and Flanking N- and C-terminal Domains in Protein Folding and Secretion in Bacillus subtilis. Journal of Biological Chemistry, 2004, 279, 19302-19314.	3.4	91
104	FlhF, the Third Signal Recognition Particle-GTPase of <i>Bacillus subtilis</i> , Is Dispensable for Protein Secretion. Journal of Bacteriology, 2004, 186, 5956-5960.	2.2	24
105	Two minimal Tat translocases in <i>Bacillus</i> . Molecular Microbiology, 2004, 54, 1319-1325.	2.5	174
106	Proteomics of Protein Secretion by <i>Bacillus subtilis</i> : Separating the "Secrets―of the Secretome. Microbiology and Molecular Biology Reviews, 2004, 68, 207-233.	6.6	497
107	Quantitative proteome profiling during the fermentation process of pleiotropicBacillus subtilis mutants. Proteomics, 2004, 4, 2408-2424.	2.2	23
108	The extracellular proteome of <i>Bacillus subtilis</i> under secretion stress conditions. Molecular Microbiology, 2003, 49, 143-156.	2.5	100

#	Article	IF	CITATIONS
109	Binding of Ïf A and Ïf B to Core RNA Polymerase after Environmental Stress in Bacillus subtilis. Journal of Bacteriology, 2003, 185, 35-40.	2.2	25
110	Genome Engineering Reveals Large Dispensable Regions in Bacillus subtilis. Molecular Biology and Evolution, 2003, 20, 2076-2090.	8.9	188
111	Toward a Complete Proteome of Bacillus subtilis. , 2003, , 357-374.		0
112	Selective Contribution of the Twin-Arginine Translocation Pathway to Protein Secretion in Bacillus subtilis. Journal of Biological Chemistry, 2002, 277, 44068-44078.	3.4	113
113	Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. Journal of Biotechnology, 2002, 98, 243-254.	3.8	62
114	Stabilization of cell wall proteins in Bacillus subtilis: A proteomic approach. Proteomics, 2002, 2, 591-602.	2.2	81
115	Phosphate Starvation-Inducible Proteins of <i>Bacillus subtilis</i> : Proteomics and Transcriptional Analysis. Journal of Bacteriology, 2000, 182, 4478-4490.	2.2	254
116	TatC Is a Specificity Determinant for Protein Secretion via the Twin-arginine Translocation Pathway. Journal of Biological Chemistry, 2000, 275, 41350-41357.	3.4	139
117	Identification and transcriptional analysis of new members of the ÏfB regulon in Bacillus subtilis. Microbiology (United Kingdom), 1999, 145, 869-880.	1.8	41
118	One of Two OsmC Homologs in <i>Bacillus subtilis</i> Is Part of the Ï, ^B -Dependent General Stress Regulon. Journal of Bacteriology, 1998, 180, 4212-4218.	2.2	43
119	Specific and general stress proteins in Bacillus subtilis � a two-dimensional protein electrophoresis study. Microbiology (United Kingdom), 1997, 143, 999-1017.	1.8	184
120	First steps from a two-dimensional protein index towards a response-regulation map forBacillus subtilis. Electrophoresis, 1997, 18, 1451-1463.	2.4	148
121	Identification of vegetative proteins for a two-dimensional protein index of Bacillus subtilis. Microbiology (United Kingdom), 1997, 143, 991-998.	1.8	64