Gustavo Ariel Slafer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3241234/publications.pdf

Version: 2024-02-01

203 papers

16,601 citations

70 h-index

11651

120 g-index

208 all docs

208 docs citations

208 times ranked 7420 citing authors

#	Article	IF	CITATIONS
1	Plant Breeding and Drought in C3 Cereals: What Should We Breed For?. Annals of Botany, 2002, 89, 925-940.	2.9	987
2	Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 2004, 86, 131-146.	5.1	667
3	Breeding for Yield Potential and Stress Adaptation in Cereals. Critical Reviews in Plant Sciences, 2008, 27, 377-412.	5.7	638
4	Raising yield potential in wheat. Journal of Experimental Botany, 2009, 60, 1899-1918.	4.8	508
5	Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany, 2011, 62, 469-486.	4.8	474
6	Achieving yield gains in wheat. Plant, Cell and Environment, 2012, 35, 1799-1823.	5.7	459
7	Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Research, 2014, 157, 71-83.	5.1	345
8	Sensitivity of Wheat Phasic Development to Major Environmental Factors: a Re-Examination of Some Assumptions Made by Physiologists and Modellers. Functional Plant Biology, 1994, 21, 393.	2.1	319
9	Genetic basis of yield as viewed from a crop physiologist's perspective. Annals of Applied Biology, 2003, 142, 117-128.	2.5	288
10	Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Annals of Applied Biology, 2005, 146, 61-70.	2.5	248
11	Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crops Research, 2007, 100, 240-248.	5.1	240
12	Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities. Field Crops Research, 2012, 127, 215-224.	5.1	240
13	Sourceâ€"sink relationships and grain mass at different positions within the spike in wheat. Field Crops Research, 1994, 37, 39-49.	5.1	207
14	Changes in yield and yield stability in wheat during the 20th century. Field Crops Research, 1998, 57, 335-347.	5.1	203
15	Floret development in near isogenic wheat lines differing in plant height. Field Crops Research, 1998, 59, 21-30.	5.1	200
16	Physiological attributes related to the generation of grain yield in bread wheat cultivars released at different eras. Field Crops Research, 1993, 31, 351-367.	5.1	199
17	PAPER PRESENTED AT INTERNATIONAL WORKSHOP ON INCREASING WHEAT YIELD POTENTIAL, CIMMYT, OBREGON, MEXICO, 20–24 MARCH 2006 Sink limitations to yield in wheat: how could it be reduced?. Journal of Agricultural Science, 2007, 145, 139.	1.3	196
18	Wheat floret survival as related to pre-anthesis spike growth. Journal of Experimental Botany, 2011, 62, 4889-4901.	4.8	191

#	Article	IF	Citations
19	Shading effects on the yield of an Argentinian wheat cultivar. Journal of Agricultural Science, 1991, 116, 1-7.	1.3	190
20	Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends. Plant Breeding, 1995, 114, 108-112.	1.9	180
21	Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index?. Annals of Applied Biology, 2007, 150, 253-257.	2.5	164
22	Understanding grain yield responses to source–sink ratios during grain filling in wheat and barley under contrasting environments. Field Crops Research, 2013, 150, 42-51.	5.1	156
23	Physiological bases of genetic gains in Mediterranean bread wheat yield in Spain. European Journal of Agronomy, 2008, 28, 162-170.	4.1	149
24	Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crops Research, 2006, 98, 52-59.	5.1	147
25	Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crops Research, 1995, 43, 55-66.	5.1	144
26	Genetic improvement in bread wheat (Triticum aestivum) yield in Argentina. Field Crops Research, 1989, 21, 289-296.	5.1	142
27	Fruiting efficiency: an alternative trait to further rise wheat yield. Food and Energy Security, 2015, 4, 92-109.	4.3	135
28	Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. Journal of Agricultural Science, 1999, 132, 453-459.	1.3	134
29	Consequences of breeding on biomass, radiation interception and radiation-use efficiency in wheat. Field Crops Research, 1997, 52, 271-281.	5.1	133
30	Title is missing!. Plant and Soil, 2000, 220, 189-205.	3.7	133
31	Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breeding, 1995, 114, 392-396.	1.9	131
32	Photoperiod sensitivity during stem elongation as an avenue to raise potential yield in wheat. Euphytica, 2001, 119, 191-197.	1.2	129
33	Grain and floret number in response to photoperiod during stem elongation in fully and slightly vernalized wheats. Field Crops Research, 2003, 81, 17-27.	5.1	129
34	Genetic-improvement effects on pre-anthesis physiological attributes related to wheat grain-yield. Field Crops Research, 1990, 23, 255-263.	5.1	128
35	Floret development and spike growth as affected by photoperiod during stem elongation in wheat. Field Crops Research, 2003, 81, 29-38.	5.1	128
36	Pre-anthesis development and number of fertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1and Ppd-B1. Euphytica, 2006, 146, 253-269.	1.2	126

#	Article	IF	CITATIONS
37	The importance of the period immediately preceding anthesis for grain weight determination in wheat. Euphytica, 2001, 119, 199-204.	1.2	115
38	Changes in physiological attributes of the dry matter economy of bread wheat (Triticum aestivum) through genetic improvement of grain yield potential at different regions of the world. Euphytica, 1991, 58, 37-49.	1.2	109
39	Developmental Base Temperature in Different Phenological Phases of Wheat (Triticum aestivum). Journal of Experimental Botany, 1991, 42, 1077-1082.	4.8	106
40	Has yield stability changed with genetic improvement of wheat yield? Euphytica, 1999, 107, 51-59.	1.2	106
41	Vernalization and photoperiod responses in wheat pre-flowering reproductive phases. Field Crops Research, 2002, 74, 183-195.	5.1	106
42	Grain number and its relationship with dry matter, N and P in the spikes at heading in response to N×P fertilization in barley. Field Crops Research, 2004, 90, 245-254.	5.1	106
43	Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Research, 2011, 122, 40-48.	5.1	105
44	Breeding Effects on Nitrogen Use Efficiency of Spring Cereals under Northern Conditions. Crop Science, 2006, 46, 561-568.	1.8	104
45	Base and optimum temperatures vary with genotype and stage of development in wheat. Plant, Cell and Environment, 1995, 18, 671-679.	5.7	103
46	Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars. Field Crops Research, 2001, 72, 109-118.	5.1	103
47	Consequences of Wheat Breeding on Nitrogen and Phosphorus Yield, Grain Nitrogen and Phosphorus Concentration and Associated Traits. Annals of Botany, 1995, 76, 315-322.	2.9	102
48	Title is missing!. Euphytica, 1997, 97, 201-208.	1,2	102
49	Grain weight, radiation interception and use efficiency as affected by sink-strength in Mediterranean wheats released from 1940 to 2005. Field Crops Research, 2009, 110, 98-105.	5.1	102
50	Genetic improvement of bread wheat (Triticum aestivum L.) in Argentina: relationships between nitrogen and dry matter. Euphytica, 1990, 50, 63-71.	1.2	98
51	Yield and biomass in wheat and barley under a range of conditions in a Mediterranean site. Field Crops Research, 2009, 112, 205-213.	5.1	97
52	Photoperiod during stem elongation in wheat: is its impact on fertile floret and grain number determination similar to that of radiation?. Functional Plant Biology, 2005, 32, 181.	2.1	96
53	Assessing strategies for wheat cropping in the monsoonal climate of the Pampas using the CERES-Wheat simulation model. Field Crops Research, 1995, 42, 81-91.	5.1	91
54	Floret development and grain setting differences between modern durum wheats under contrasting nitrogen availability. Journal of Experimental Botany, 2013, 64, 169-184.	4.8	91

#	Article	IF	Citations
55	Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. Journal of Experimental Botany, 2016, 67, 4221-4230.	4.8	88
56	Title is missing!. Euphytica, 2003, 130, 325-334.	1.2	86
57	Development and Seed Number in Indeterminate Soybean as Affected by Timing and Duration of Exposure to Long Photoperiods after Flowering. Annals of Botany, 2007, 99, 925-933.	2.9	86
58	Differences in phasic development rate amongst wheat cultivars independent of responses to photoperiod and vernalization. A viewpoint of the intrinsic earliness hypothesis. Journal of Agricultural Science, 1996, 126, 403-419.	1.3	85
59	Floret development of durum wheat in response to nitrogen availability. Journal of Experimental Botany, 2010, 61, 4351-4359.	4.8	84
60	Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Research, 2015, 183, 184-203.	5.1	84
61	Duration of the stem elongation period influences the number of fertile florets in wheat and barley Functional Plant Biology, 2000, 27, 931.	2.1	83
62	Floret development and survival in wheat plants exposed to contrasting photoperiod and radiation environments during stem elongation. Functional Plant Biology, 2005, 32, 189.	2.1	83
63	Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. Journal of Agricultural Science, 2009, 147, 657-667.	1.3	81
64	Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Research, 2012, 128, 167-179.	5.1	81
65	Responses to photoperiod change with phenophase and temperature during wheat development. Field Crops Research, 1996, 46, 1-13.	5.1	80
66	Physiological Maturity in Wheat Based on Kernel Water and Dry Matter. Agronomy Journal, 2000, 92, 895-901.	1.8	79
67	Nitrogen and water use efficiencies of wheat and barley under a Mediterranean environment in Catalonia. Field Crops Research, 2012, 128, 109-118.	5.1	78
68	Yield determination, interplay between major components and yield stability in a traditional and a contemporary wheat across a wide range of environments. Field Crops Research, 2017, 203, 114-127.	5.1	76
69	Addressing Research Bottlenecks to Crop Productivity. Trends in Plant Science, 2021, 26, 607-630.	8.8	76
70	Final grain weight in wheat as affected by short periods of high temperature during pre- and post-anthesis under field conditions. Functional Plant Biology, 1999, 26, 453.	2.1	75
71	Source - sink effects on grain weight of bread wheat, durum wheat, and triticale at different locations. Australian Journal of Agricultural Research, 2006, 57, 227.	1.5	73
72	Floret fertility in wheat as affected by photoperiod during stem elongation and removal of spikelets at booting. European Journal of Agronomy, 2008, 28, 301-308.	4.1	72

#	Article	IF	CITATIONS
73	Modelling the impact of heat stress on maize yield formation. Field Crops Research, 2016, 198, 226-237.	5.1	72
74	Differences in yield physiology between modern, well adapted durum wheat cultivars grown under contrasting conditions. Field Crops Research, 2012, 136, 52-64.	5.1	71
75	Reproductive development and yield components in indeterminate soybean as affected by post-flowering photoperiod. Field Crops Research, 2005, 93, 212-222.	5.1	69
76	Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. European Journal of Agronomy, 2008, 28, 541-550.	4.1	69
77	Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Research, 2009, 110, 91-97.	5.1	69
78	Genetic variability in duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crops Research, 2009, 113, 95-104.	5.1	68
79	Rates and Cardinal Temperatures for Processes of Development in Wheat: Effects of Temperature and Thermal Amplitude. Functional Plant Biology, 1995, 22, 913.	2.1	67
80	Grain weight in wheat cultivars released from 1920 to 1990 as affected by post-anthesis defoliation. Journal of Agricultural Science, 1997, 128, 273-281.	1.3	67
81	Grain weight responses to post-anthesis spikelet-trimming in an old and a modern wheat under Mediterranean conditions. European Journal of Agronomy, 2006, 25, 365-371.	4.1	67
82	Nitrogen utilization efficiency in wheat: A global perspective. European Journal of Agronomy, 2020, 114, 126008.	4.1	67
83	Rooting patterns in near-isogenic lines of spring wheat for dwarfism. Plant and Soil, 1997, 197, 79-86.	3.7	66
84	Genotypic variability and response to water stress of pre- and post-anthesis phases in triticale. European Journal of Agronomy, 2008, 28, 171-177.	4.1	66
85	Low red/far-red ratios delay spike and stem growth in wheat. Journal of Experimental Botany, 2010, 61, 3151-3162.	4.8	66
86	Bread and durum wheat yields under a wide range of environmental conditions. Field Crops Research, 2014, 156, 258-271.	5.1	66
87	Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. Field Crops Research, 2016, 191, 150-160.	5.1	65
88	Dynamics of floret development determining differences in spike fertility in an elite population of wheat. Field Crops Research, 2015, 172, 21-31.	5.1	63
89	Productivity in prehistoric agriculture: physiological models for the quantification of cereal yields as an alternative to traditional approaches. Journal of Archaeological Science, 2003, 30, 681-693.	2.4	62
90	Developmental responses to sowing date in wheat, barley and rapeseed. Field Crops Research, 2001, 71, 211-223.	5.1	61

#	Article	IF	Citations
91	Wheat Yield as Affected by Length of Exposure to Waterlogging During Stem Elongation. Journal of Agronomy and Crop Science, 2015, 201, 473-486.	3.5	57
92	Nitrogen economy in old and modern malting barleys. Field Crops Research, 2008, 106, 171-178.	5.1	54
93	Co-limitation of nitrogen and water, and yield and resource-use efficiencies of wheat and barley. Crop and Pasture Science, 2010, 61, 844.	1.5	54
94	Contrasting Ppd alleles in wheat: effects on sensitivity to photoperiod in different phases. Field Crops Research, 2002, 73, 95-105.	5.1	52
95	Yield stability and development in two- and six-rowed winter barleys under Mediterranean conditions. Field Crops Research, 2003, 81, 109-119.	5.1	52
96	Photoperiod \tilde{A} — temperature interactions in contrasting wheat genotypes: Time to heading and final leaf number. Field Crops Research, 1995, 44, 73-83.	5.1	51
97	Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Research, 2010, 119, 36-47.	5.1	51
98	Is floret primordia death triggered by floret development in durum wheat?. Journal of Experimental Botany, 2013, 64, 2859-2869.	4.8	50
99	Variability in the Duration of Stem Elongation in Wheat and Barley Genotypes. Journal of Agronomy and Crop Science, 2007, 193, 138-145.	3.5	49
100	Yield determination in triticale as affected by radiation in different development phases. European Journal of Agronomy, 2008, 28, 597-605.	4.1	49
101	Dynamics of floret initiation/death determining spike fertility in wheat as affected by Ppd genes under field conditions. Journal of Experimental Botany, 2018, 69, 2633-2645.	4.8	49
102	Intrinsic earliness and basic development rate assessed for their response to temperature in wheat. Euphytica, 1995, 83, 175-183.	1.2	47
103	Reproductive Allocation of Biomass and Nitrogen in Annual and Perennial Lesquerella Crops. Annals of Botany, 2005, 96, 127-135.	2.9	47
104	Earliness Per Se by Temperature Interaction on Wheat Development. Scientific Reports, 2019, 9, 2584.	3.3	47
105	Earliness per se and its dependence upon temperature in diploid wheat lines differing in the major gene Eps-Am1 alleles. Journal of Agricultural Science, 2003, 141, 149-154.	1.3	46
106	Seed number responses to extended photoperiod and shading during reproductive stages in indeterminate soybean. European Journal of Agronomy, 2013, 51, 91-100.	4.1	46
107	Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. Journal of Experimental Botany, 2018, 69, 2621-2631.	4.8	46
108	Yield and grain weight responses to post-anthesis increases in maximum temperature under field grown wheat as modified by nitrogen supply. Field Crops Research, 2018, 221, 228-237.	5.1	46

#	Article	IF	CITATIONS
109	Preanthesis shading effects on the number of grains of three bread wheat cultivars of different potential number of grains. Field Crops Research, 1994, 36, 31-39.	5.1	45
110	Phyllochron in Wheat as Affected by Photoperiod Under Two Temperature Regimes. Functional Plant Biology, 1997, 24, 151.	2.1	44
111	Wheat grain number: Identification of favourable physiological traits in an elite doubled-haploid population. Field Crops Research, 2014, 168, 126-134.	5.1	44
112	Effects of ambient temperature in association with photoperiod on phenology and on the expressions of major plant developmental genes in wheat (<scp><i>Triticum aestivum</i></scp> L.). Plant, Cell and Environment, 2017, 40, 1629-1642.	5.7	44
113	Does temperature affect final numbers of primordia in wheat?. Field Crops Research, 1994, 39, 111-117.	5.1	42
114	Physiological attributes associated with yield and stability in selected lines of a durum wheat population. Euphytica, 2011, 180, 195-208.	1.2	42
115	FOCUS: Estimated Wheat Yields During the Emergence of Agriculture Based on the Carbon Isotope Discrimination of Grains: Evidence from a 10th Millennium BP Site on the Euphrates. Journal of Archaeological Science, 2001, 28, 341-350.	2.4	41
116	Rate of Leaf Appearance and Final Number of Leaves in Wheat: Effects of Duration and Rate of Change of Photoperiod. Annals of Botany, 1994, 74, 427-436.	2.9	40
117	Relationship between fruiting efficiency and grain weight in durum wheat. Field Crops Research, 2015, 177, 109-116.	5.1	40
118	Crop productivity as related to single-plant traits at key phenological stages in durum wheat. Field Crops Research, 2012, 138, 42-51.	5.1	39
119	Detecting interactive effects of N fertilization and heat stress on maize productivity by remote sensing techniques. European Journal of Agronomy, 2016, 73, 11-24.	4.1	38
120	Increases in Grain Yieid in Bread Wheat from Breeding and Associated Physiological Changes. , 2021, , 1-68.		38
121	Leaf appearance, tillering and their coordination in response to NxP fertilization in barley. Plant and Soil, 2003, 255, 587-594.	3.7	37
122	Grain weight and malting quality in barley as affected by brief periods of increased spike temperature under field conditions. Australian Journal of Agricultural Research, 2002, 53, 1219.	1.5	36
123	Crop Development. , 2009, , 277-308.		36
124	Variation in developmental patterns among elite wheat lines and relationships with yield, yield components and spike fertility. Field Crops Research, 2016, 196, 294-304.	5.1	36
125	Green Area Duration during the Grain Filling Period of an Argentine Wheat Cultivar as Influenced by Sowing Date, Temperature and Sink Strength. Journal of Agronomy and Crop Science, 1992, 168, 191-200.	3.5	35
126	Responses to photoperiod before and after jointing in wheat substitution lines. Euphytica, 2001, 118, 47-51.	1.2	35

#	Article	IF	CITATIONS
127	Variability in the Duration of Stem Elongation in Wheat Genotypes and Sensitivity to Photoperiod and Vernalization. Journal of Agronomy and Crop Science, 2007, 193, 131-137.	3 . 5	35
128	Contrasting performance of barley and wheat in a wide range of conditions in Mediterranean Catalonia (Spain). Annals of Applied Biology, 2007, 151, 167-173.	2.5	35
129	Development in wheat as affected by timing and length of exposure to long photoperiod. Journal of Experimental Botany, 1995, 46, 1877-1886.	4.8	34
130	Title is missing!. Euphytica, 2003, 133, 291-298.	1.2	34
131	Fruiting efficiency in wheat: physiological aspects and genetic variation among modern cultivars. Field Crops Research, 2016, 191, 83-90.	5.1	34
132	Benchmarking nitrogen utilisation efficiency in wheat for Mediterranean and non-Mediterranean European regions. Field Crops Research, 2019, 241, 107573.	5.1	32
133	Are temperature effects on weight and quality of barley grains modified by resource availability?. Australian Journal of Agricultural Research, 2008, 59, 510.	1.5	31
134	Simulated yield advantages of extending post-flowering development at the expense of a shorter pre-flowering development in soybean. Field Crops Research, 2007, 101, 321-330.	5.1	30
135	Can N management affect the magnitude of yield loss due to heat waves in wheat and maize?. Current Opinion in Plant Biology, 2018, 45, 276-283.	7.1	30
136	Floret development and spike fertility in wheat: Differences between cultivars of contrasting yield potential and their sensitivity to photoperiod and soil N. Field Crops Research, 2020, 256, 107908.	5.1	30
137	Do barley and wheat (bread and durum) differ in grain weight stability through seasons and water–nitrogen treatments in a Mediterranean location?. Field Crops Research, 2011, 121, 240-247.	5.1	29
138	Physiological Basis of Genotypic Response to Management in Dryland Wheat. Frontiers in Plant Science, 2019, 10, 1644.	3.6	29
139	Building bridges: an integrated strategy for sustainable food production throughout the value chain. Molecular Breeding, 2013, 32, 743-770.	2.1	28
140	Have changes in yield (1900-1992) been accompanied by a decreased yield stability in Australian cereal production?. Australian Journal of Agricultural Research, 1996, 47, 323.	1.5	27
141	Leaf appearance, tillering and their coordination in old and modern barleys from Argentina. Field Crops Research, 2004, 86, 23-32.	5.1	27
142	Duration of developmental phases, and dynamics of leaf appearance and tillering, as affected by source and doses of photoperiod insensitivity alleles in wheat under field conditions. Field Crops Research, 2017, 214, 45-55.	5.1	27
143	A wiring diagram to integrate physiological traits of wheat yield potential. Nature Food, 2022, 3, 318-324.	14.0	27
144	Postanthesis green area duration in a semidwarf and a standard-height wheat cultivar as affected by sink strength. Australian Journal of Agricultural Research, 1994, 45, 1337.	1.5	26

#	Article	IF	CITATIONS
145	CO2Effects on Phasic Development, Leaf Number and Rate of Leaf Appearance in Wheat. Annals of Botany, 1997, 79, 75-81.	2.9	26
146	Grain number determination in an old and a modern Mediterranean wheat as affected by pre-anthesis shading. Crop and Pasture Science, 2009, 60, 271.	1.5	26
147	Is time to flowering in wheat and barley influenced by nitrogen?: A critical appraisal of recent published reports. European Journal of Agronomy, 2014, 54, 40-46.	4.1	26
148	Relationship Between Grain Growth and Postanthesis Leaf Area Duration in Dwarf, Semidwarf and Tall Isogenic Lines of Wheat. Journal of Agronomy and Crop Science, 1996, 177, 115-122.	3.5	25
149	Breeding effects on sensitivity of barley grain weight and quality to events of high temperature during grain filling. Euphytica, 2005, 141, 41-48.	1.2	25
150	Physiological determinants of fertile floret survival in wheat as affected by earliness per se genes under field conditions. European Journal of Agronomy, 2018, 99, 206-213.	4.1	25
151	Development Rate in Wheat as Affected by Duration and Rate of Change of Photoperiod. Annals of Botany, 1994, 73, 671-677.	2.9	24
152	Selection for high grain number per unit stem length through four generations from mutants in a durum wheat population to increase yields of individual plants and crops. Field Crops Research, 2012, 129, 59-70.	5.1	24
153	High-carotenoid maize: development of plant biotechnology prototypes for human and animal health and nutrition. Phytochemistry Reviews, 2018, 17, 195-209.	6.5	24
154	Fruiting Efficiency in three Bread Wheat (<i>Tritkum aestivum</i>) Cultivars Released at Different Eras. Number of Grains per Spike and Grain Weight. Journal of Agronomy and Crop Science, 1993, 170, 251-260.	3.5	23
155	Interannual variability of wheat yield in the Argentine Pampas during the 20th century. Agriculture, Ecosystems and Environment, 2004, 103, 177-190.	5.3	23
156	IMPROVING WHEAT YIELDS THROUGH N FERTILIZATION IN MEDITERRANEAN TUNISIA. Experimental Agriculture, 2011, 47, 459-475.	0.9	23
157	Genetic and environmental effects on crop development determining adaptation and yield. , 2015, , 285-319.		22
158	Photoperiod-sensitivity genes shape floret development in wheat. Journal of Experimental Botany, 2019, 70, 1339-1348.	4.8	22
159	Are awns truly relevant for wheat yields? A study of performance of awned/awnless isogenic lines and their response to source–sink manipulations. Field Crops Research, 2020, 254, 107827.	5.1	22
160	Wheat pre-anthesis development as affected by photoperiod sensitivity genes (Ppd-1) under contrasting photoperiods. Functional Plant Biology, 2018, 45, 645.	2.1	21
161	Wheat Development as Affected by Radiation at Two Temperatures. Journal of Agronomy and Crop Science, 1995, 175, 249-263.	3.5	19
162	Title is missing!. Euphytica, 2003, 130, 61-69.	1.2	18

#	Article	IF	CITATIONS
163	Physiological drivers of responses of grains per m2 to environmental and genetic factors in wheat. Field Crops Research, 2022, 285, 108593.	5.1	18
164	Barley development as affected by rate of change of photoperiod. Journal of Agricultural Science, 1995, 124, 379-388.	1.3	17
165	Maize Grain Weight Sensitivity to Source–Sink Manipulations under a Wide Range of Field Conditions. Crop Science, 2018, 58, 2542-2557.	1.8	17
166	Earliness per se effects on developmental traits in hexaploid wheat grown under field conditions. European Journal of Agronomy, 2018, 99, 214-223.	4.1	17
167	Maize senescence under contrasting source-sink ratios during the grain filling period. Environmental and Experimental Botany, 2020, 180, 104263.	4.2	17
168	Quantitative developmental response to the length of exposure to long photoperiod in wheat and barley. Journal of Agricultural Science, 2003, 141, 159-167.	1.3	15
169	Grain Protein Quality in Response to Changes in Preâ€anthesis Duration in Wheats Released in 1940, 1964 and 1994. Journal of Agronomy and Crop Science, 2005, 191, 226-232.	3. 5	15
170	Intensifying cereal management in dryland Mediterranean agriculture: Rainfed wheat and barley responses to nitrogen fertilisation. European Journal of Agronomy, 2022, 137, 126518.	4.1	15
171	Agronomy and plant breeding are key to combating food crisis. Nature, 2008, 453, 1177-1177.	27.8	14
172	Earliness per se×temperature interaction: consequences on leaf, spikelet, and floret development in wheat. Journal of Experimental Botany, 2020, 71, 1956-1968.	4.8	14
173	Phenological Responses to Temperature of an Annual and a Perennial Lesquerella Species. Annals of Botany, 2004, 94, 139-144.	2.9	13
174	Wheat., 2021,, 98-163.		13
175	A carotenogenic mini-pathway introduced into white corn does not affect development or agronomic performance. Scientific Reports, 2016, 6, 38288.	3.3	12
176	Sink-strength determines differences in performance between bread and durum wheat. Field Crops Research, 2016, 198, 101-111.	5.1	12
177	Grain Weight Reductions in Wheat Associated with Semidwarfism: an Analysis of Grain Weight at Different Positions Within the Spike of Near-isogenic Lines. Journal of Agronomy and Crop Science, 1996, 177, 9-16.	3.5	11
178	Malting quality as affected by barley breeding (1944–1998) in Argentina. Euphytica, 2003, 134, 161-167.	1.2	11
179	Interactions between two QTLs for time to anthesis on spike development and fertility in wheat. Scientific Reports, 2021, 11, 2451.	3.3	10
180	Genotype by Environment Interaction and Adaptation. , 2018, , 1-44.		10

#	Article	IF	CITATIONS
181	Effects of moisture stress on leaf appearance, tillering and other aspects of development in Triticum tauschii. Euphytica, 1995, 86, 55-64.	1.2	8
182	Fruiting efficiency differences between cereal species. Field Crops Research, 2019, 231, 68-80.	5.1	8
183	Leaf Photosynthesis During Grain Filling Under Mediterranean Environments: Are Barley or Traditional Wheat More Efficient Than Modern Wheats?. Journal of Agronomy and Crop Science, 2014, 200, 172-182.	3.5	7
184	Cereal yield in Mediterranean-type environments: challenging the paradigms on terminal drought, the adaptability of barley vs wheat and the role of nitrogen fertilization., 2015,, 141-158.		7
185	Are portable polyethylene tents reliable for imposing heat treatments in field-grown wheat?. Field Crops Research, 2021, 271, 108206.	5.1	7
186	Environmental control of phenological development in two Lesquerella species. Field Crops Research, 2006, 96, 320-327.	5.1	6
187	Genetic variation in the critical specific leaf nitrogen maximising yield among modern maize hybrids. Field Crops Research, 2015, 172, 99-105.	5.1	6
188	Physiology of Crop Yield. , 2004, , 1-4.		5
189	Modelling yield response of a traditional and a modern barley cultivar to different water and nitrogen levels in two contrasting soil types. Crop and Pasture Science, 2011, 62, 289.	1.5	5
190	Genotype by Environment Interaction and Adaptation. , 2019, , 29-71.		5
191	Weight of individual wheat grains estimated from high-throughput digital images of grain area. European Journal of Agronomy, 2021, 124, 126237.	4.1	5
192	Influence of â€~historic' photoperiod during stem elongation on the number of fertile florets in wheat. Journal of Agricultural Science, 2003, 141, 155-158.	1.3	4
193	Multiple authorship of crop science papers: are there too many co-authors?. Field Crops Research, 2005, 94, 272-276.	5.1	4
194	Should crop scientists consider a journal's impact factor in deciding where to publish?. European Journal of Agronomy, 2008, 29, 208-212.	4.1	4
195	Genotypic differences in wheat yield determinants within a NAM population based on elite parents. European Journal of Agronomy, 2021, 123, 126223.	4.1	4
196	Phenology and Floret Development as Affected by the Interaction between Eps-7D and Ppd-D1. Plants, 2021, 10, 533.	3.5	4
197	Wheat Developmental Traits as Affected by the Interaction between Eps-7D and Temperature under Contrasting Photoperiods with Insensitive Ppd-D1 Background. Plants, 2021, 10, 547.	3.5	3
198	Developmental patterns and rates of organogenesis across modern and well-adapted wheat cultivars. European Journal of Agronomy, 2021, 126, 126280.	4.1	3

#	Article	IF	CITATIONS
199	Influence of photoperiod on culm length in wheat. Field Crops Research, 1995, 40, 95-99.	5.1	2
200	Should the impact factor of the year of publication or the last available one be used when evaluating scientists? Spanish Journal of Agricultural Research, 2020, 18, eM01.	0.6	1
201	Yield Potential. , 2022, , 379-396.		1
202	Crop Science and Technology, Introduction. , 2019, , 1-5.		0
203	Crop Science and Technology, Introduction. , 2018, , 1-5.		0