
Li-Jia Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of ethylene does not affect reproductive success and synergid cell death in Arabidopsis. Molecular Plant, 2022, 15, 354-362.	8.3	19
2	RALF peptide signaling controls the polytubey block in <i>Arabidopsis</i> . Science, 2022, 375, 290-296.	12.6	65
3	Progressive chromatin silencing of ABA biosynthesis genes permits seed germination in Arabidopsis. Plant Cell, 2022, 34, 2871-2891.	6.6	14
4	AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube guidance. Plant Physiology, 2021, 186, 865-873.	4.8	9
5	VPS18-regulated vesicle trafficking controls the secretion of pectin and its modifying enzyme during pollen tube growth in Arabidopsis. Plant Cell, 2021, 33, 3042-3056.	6.6	17
6	Stigmatic ROS: regulator of compatible pollen tube perception?. Trends in Plant Science, 2021, 26, 993-995.	8.8	8
7	From birth to function: Male gametophyte development in flowering plants. Current Opinion in Plant Biology, 2021, 63, 102118.	7.1	12
8	The Features and Regulation of Co-transcriptional Splicing in Arabidopsis. Molecular Plant, 2020, 13, 278-294.	8.3	52
9	Update on Receptors and Signaling. Plant Physiology, 2020, 182, 1527-1530.	4.8	20
10	Semi-In Vivo Assay for Pollen Tube Attraction. Methods in Molecular Biology, 2020, 2160, 83-92.	0.9	0
11	Obtaining Mutant Pollen for Phenotypic Analysis and Pollen Tube Dual Staining. Methods in Molecular Biology, 2020, 2160, 181-190.	0.9	3
12	Kingdom Come. PLoS Genetics, 2020, 16, e1009178.	3.5	0
13	How CrRLK1L Receptor Complexes Perceive RALF Signals. Trends in Plant Science, 2019, 24, 978-981.	8.8	38
14	Isocitrate lyase plays important roles in plant salt tolerance. BMC Plant Biology, 2019, 19, 472.	3.6	33
15	Cysteine-rich peptides: signals for pollen tube guidance, species isolation and beyond. Science China Life Sciences, 2019, 62, 1243-1245.	4.9	9
16	LLG2/3 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity. Current Biology, 2019, 29, 3256-3265.e5.	3.9	87
17	Cysteine-rich peptides promote interspecific genetic isolation in <i>Arabidopsis</i> . Science, 2019, 364, .	12.6	101
18	Engineered xCas9 and SpCas9â€NG variants broaden PAM recognition sites to generate mutations in <i>Arabidopsis</i> plants. Plant Biotechnology Journal, 2019, 17, 1865-1867.	8.3	51

#	Article	IF	CITATIONS
19	Peptide/receptor-like kinase-mediated signaling involved in male–female interactions. Current Opinion in Plant Biology, 2019, 51, 7-14.	7.1	61
20	Mechanism of DNAâ€Induced Phase Separation for Transcriptional Repressor VRN1. Angewandte Chemie, 2019, 131, 4912-4916.	2.0	13
21	Mechanism of DNAâ€Induced Phase Separation for Transcriptional Repressor VRN1. Angewandte Chemie - International Edition, 2019, 58, 4858-4862.	13.8	69
22	Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytologist, 2019, 222, 687-693.	7.3	57
23	Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. Journal of Genetics and Genomics, 2018, 45, 155-168.	3.9	32
24	Crystal structures of the extracellular domains of the CrRLK1L receptorâ€like kinases ANXUR1 and ANXUR2. Protein Science, 2018, 27, 886-892.	7.6	47
25	TANDEM ZINC-FINGER/PLUS3 Is a Key Component of Phytochrome A Signaling. Plant Cell, 2018, 30, 835-852.	6.6	49
26	Sperm cells are passive cargo of the pollen tube in plant fertilization. Nature Plants, 2017, 3, 17079.	9.3	84
27	SNAIL1 is essential for female gametogenesis in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2017, 59, 629-641.	8.5	12
28	Plant reproduction: Recent discoveries from China. Journal of Integrative Plant Biology, 2017, 59, 591-593.	8.5	0
29	The signals to trigger the initiation of ovule enlargement are from the pollen tubes: The direct evidence. Journal of Integrative Plant Biology, 2017, 59, 600-603.	8.5	9
30	<i>Arabidopsis</i> pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science, 2017, 358, 1596-1600.	12.6	324
31	Auxins. , 2017, , 39-76.		10
32	A Novel Imprinted Gene NUWA Controls Mitochondrial Function in Early Seed Development in Arabidopsis. PLoS Genetics, 2017, 13, e1006553.	3.5	40
33	AtVPS41-mediated endocytic pathway is essential for pollen tube–stigma interaction in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6307-6312.	7.1	75
34	Plant Mediator complex and its critical functions in transcription regulation. Journal of Integrative Plant Biology, 2016, 58, 106-118.	8.5	63
35	Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Research, 2016, 26, 543-555.	12.0	109
36	Maternal ENODLs Are Required for Pollen Tube Reception in Arabidopsis. Current Biology, 2016, 26, 2343-2350.	3.9	82

#	Article	IF	CITATIONS
37	SERK Family Receptor-like Kinases Function as Co-receptors with PXY for Plant Vascular Development. Molecular Plant, 2016, 9, 1406-1414.	8.3	99
38	RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis. Plant Cell, 2016, 28, 55-73.	6.6	79
39	CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis. PLoS Genetics, 2016, 12, e1005744.	3.5	22
40	The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating <i>RAX</i> Genes in Arabidopsis. Plant Cell, 2015, 27, 3112-3127.	6.6	102
41	<i>ADP1</i> affects abundance and endocytosis of PIN-FORMED proteins in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2015, 10, e973811.	2.4	4
42	The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development. Cell Research, 2015, 25, 121-134.	12.0	93
43	Peptide signalling during the pollen tube journey and double fertilization. Journal of Experimental Botany, 2015, 66, 5139-5150.	4.8	111
44	Active role of small peptides in <i>Arabidopsis</i> reproduction: Expression evidence. Journal of Integrative Plant Biology, 2015, 57, 518-521.	8.5	40
45	C-terminal extension of calmodulin-like 3 protein from <italic>Oryza sativa</italic> L.: interaction with a high mobility group target protein. Acta Biochimica Et Biophysica Sinica, 2015, 47, 880-889.	2.0	14
46	GLABRA2 Directly Suppresses Basic Helix-Loop-Helix Transcription Factor Genes with Diverse Functions in Root Hair Development. Plant Cell, 2015, 27, tpc.15.00607.	6.6	97
47	TRANSLUCENT GREEN, an ERF Family Transcription Factor, Controls Water Balance in Arabidopsis by Activating the Expression of Aquaporin Genes. Molecular Plant, 2014, 7, 601-615.	8.3	79
48	ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis. PLoS Genetics, 2014, 10, e1003954.	3.5	47
49	The Arabidopsis Mediator subunit <scp>MED</scp> 16 regulates iron homeostasis by associating with <scp>EIN</scp> 3/ <scp>EIL</scp> 1 through subunit <scp>MED</scp> 25. Plant Journal, 2014, 77, 838-851.	5.7	120
50	Generation and Identification of Arabidopsis EMS Mutants. Methods in Molecular Biology, 2014, 1062, 225-239.	0.9	9
51	Generation and Characterization of Arabidopsis T-DNA Insertion Mutants. Methods in Molecular Biology, 2014, 1062, 241-258.	0.9	6
52	The <i>Arabidopsis</i> Anaphaseâ€Promoting Complex/Cyclosome Subunit 1 is Critical for Both Female Gametogenesis and Embryogenesis ^F . Journal of Integrative Plant Biology, 2013, 55, 64-74.	8.5	35
53	The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in <i>Arabidopsis </i> A. Plant Cell, 2013, 25, 421-437.	6.6	116
54	Membrane-Bound RLCKs LIP1 and LIP2 Are Essential Male Factors Controlling Male-Female Attraction in Arabidopsis. Current Biology, 2013, 23, 993-998.	3.9	112

#	Article	IF	CITATIONS
55	A new protein kinase gene SSG1 is essential for adaptation of Arabidopsis to salt stress. Environmental and Experimental Botany, 2013, 86, 9-16.	4.2	3
56	Transcriptional Profiling of Rice Early Response to Magnaporthe oryzae Identified OsWRKYs as Important Regulators in Rice Blast Resistance. PLoS ONE, 2013, 8, e59720.	2.5	84
57	Four Closelyâ€related RINGâ€type E3 Ligases, APD1–4, are Involved in Pollen Mitosis II Regulation in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2012, 54, 814-827.	8.5	27
58	<i>Arabidopsis</i> RAP2.2 plays an important role in plant resistance to <i>Botrytis cinerea</i> and ethylene responses. New Phytologist, 2012, 195, 450-460.	7.3	129
59	Arabidopsis AtVPS15 Plays Essential Roles in Pollen Germination Possibly by Interacting with AtVPS34. Journal of Genetics and Genomics, 2012, 39, 81-92.	3.9	29
60	The Arabidopsis APC4 subunit of the anaphaseâ€promoting complex/cyclosome (APC/C) is critical for both female gametogenesis and embryogenesis. Plant Journal, 2012, 69, 227-240.	5.7	40
61	Allelic Analyses of the <i>Arabidopsis YUC1</i> Locus Reveal Residues and Domains Essential for the Functions of YUC Family of Flavin Monooxygenases. Journal of Integrative Plant Biology, 2011, 53, 54-62.	8.5	26
62	Overâ€expression of <i>WOX1</i> Leads to Defects in Meristem Development and Polyamine Homeostasis in <i>Arabidopsis</i> ^F . Journal of Integrative Plant Biology, 2011, 53, 493-506.	8.5	63
63	Plant Hormones: Metabolism, Signaling and Crosstalk. Journal of Integrative Plant Biology, 2011, 53, 410-411.	8.5	7
64	A High-Throughput Screening System for Arabidopsis Transcription Factors and Its Application to Med25-Dependent Transcriptional Regulation. Molecular Plant, 2011, 4, 546-555.	8.3	135
65	<scp>d</scp> - <i>myo</i> -Inositol-3-Phosphate Affects Phosphatidylinositol-Mediated Endomembrane Function in <i>Arabidopsis</i> and Is Essential for Auxin-Regulated Embryogenesis Â. Plant Cell, 2011, 23, 1352-1372.	6.6	92
66	CFL1, a WW Domain Protein, Regulates Cuticle Development by Modulating the Function of HDG1, a Class IV Homeodomain Transcription Factor, in Rice and <i>Arabidopsis</i> A. Plant Cell, 2011, 23, 3392-3411.	6.6	148
67	A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis. Plant Journal, 2010, 63, 880-888.	5.7	72
68	A nuclear-encoded mitochondrial gene AtCIB22 is essential for plant development in Arabidopsis. Journal of Genetics and Genomics, 2010, 37, 667-683.	3.9	15
69	<i>Dof5.6/HCA2</i> , a Dof Transcription Factor Gene, Regulates Interfascicular Cambium Formation and Vascular Tissue Development in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 3518-3534.	6.6	162
70	Phytochrome A Mediates Rapid Red Light–Induced Phosphorylation of <i>Arabidopsis</i> FAR-RED ELONGATED HYPOCOTYL1 in a Low Fluence Response Â. Plant Cell, 2009, 21, 494-506.	6.6	67
71	Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environmental and Experimental Botany, 2009, 67, 377-386.	4.2	92
72	Overexpression of a New Putative Membrane Protein Gene <i>AtMRB1</i> Results in Organ Size Enlargement in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2009, 51, 130-139.	8.5	7

#	Article	IF	CITATIONS
73	Distinguishing transgenic from non-transgenic Arabidopsis plants by 1H NMR-based metabolic fingerprinting. Journal of Genetics and Genomics, 2009, 36, 621-628.	3.9	29
74	A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Molecular Biology, 2008, 66, 315-327.	3.9	49
75	The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 2008, 27, 575-584.	5.6	43
76	<i>SPOROCYTELESS</i> modulates <i>YUCCA</i> expression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 2008, 179, 751-764.	7.3	69
77	Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis. Molecular Plant, 2008, 1, 564-574.	8.3	63
78	Targeted Degradation of the Cyclin-Dependent Kinase Inhibitor ICK4/KRP6 by RING-Type E3 Ligases Is Essential for Mitotic Cell Cycle Progression during <i>Arabidopsis</i> Gametogenesis A. Plant Cell, 2008, 20, 1538-1554.	6.6	142
79	Virus induced gene silencing of AtCDC5 results in accelerated cell death in Arabidopsis leaves. Plant Physiology and Biochemistry, 2007, 45, 87-94.	5.8	20
80	Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 2007, 17, 471-482.	12.0	313
81	Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Research, 2007, 17, 249-263.	12.0	107
82	AtCDC5 regulates the G2 to M transition of the cell cycle and is critical for the function of Arabidopsis shoot apical meristem. Cell Research, 2007, 17, 815-828.	12.0	72
83	Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Plant Journal, 2007, 51, 512-525.	5.7	106
84	Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49, 75-80.	8.5	38
85	GAMT2 Encodes a Methyltransferase of Gibberellic Acid That is Involved in Seed Maturation and Germination in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49, 368-381.	8.5	14
86	Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Reports, 2007, 27, 125-135.	5.6	64
87	Two groups of MYB transcription factors share a motif which enhances trans-activation activity. Biochemical and Biophysical Research Communications, 2006, 341, 1155-1163.	2.1	44
88	Overexpression of the Wounding-Responsive Gene AtMYB15 Activates the Shikimate Pathway in Arabidopsis. Journal of Integrative Plant Biology, 2006, 48, 1084-1095.	8.5	52
89	Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Current Opinion in Plant Biology, 2006, 9, 544-549.	7.1	156
90	A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice. Journal of Experimental Botany, 2006, 57, 1263-1273.	4.8	112

#	Article	IF	CITATIONS
91	Arabidopsis FHY1 Protein Stability Is Regulated by Light via Phytochrome A and 26S Proteasome. Plant Physiology, 2005, 139, 1234-1243.	4.8	27
92	An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. Plant Cell, 2005, 17, 2693-2704.	6.6	260
93	Cloning and expression analysis of Zmglp1, a new germin-like protein gene in maize. Biochemical and Biophysical Research Communications, 2005, 331, 1257-1263.	2.1	30
94	Genome-Wide ORFeome Cloning and Analysis of Arabidopsis Transcription Factor Genes. Plant Physiology, 2004, 135, 773-782.	4.8	205
95	Obtaining and analysis of flanking sequences from T-DNA transformants of Arabidopsis. Plant Science, 2003, 165, 941-949.	3.6	54
96	Molecular Cloning and Functional Analysis of a Novel Type of Bowman-Birk Inhibitor Gene Family in Rice. Plant Physiology, 2003, 133, 560-570.	4.8	110
97	Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes and Development, 2002, 16, 1247-1259.	5.9	541
98	Two nuclear localization signals required for the nuclear localization of rice ribosomal protein S4. Plant Science, 2002, 162, 251-256.	3.6	8
99	Title is missing!. Plant Cell, Tissue and Organ Culture, 1999, 58, 87-92.	2.3	28