Li-Jia Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240890/publications.pdf

Version: 2024-02-01

99 papers	6,814 citations	47006 47 h-index	79 g-index
100	100	100	8556 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes and Development, 2002, 16, 1247-1259.	5.9	541
2	<i>Arabidopsis</i> pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science, 2017, 358, 1596-1600.	12.6	324
3	Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 2007, 17, 471-482.	12.0	313
4	An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. Plant Cell, 2005, 17, 2693-2704.	6.6	260
5	Genome-Wide ORFeome Cloning and Analysis of Arabidopsis Transcription Factor Genes. Plant Physiology, 2004, 135, 773-782.	4.8	205
6	<i>Dof5.6/HCA2</i> , a Dof Transcription Factor Gene, Regulates Interfascicular Cambium Formation and Vascular Tissue Development in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2009, 21, 3518-3534.	6.6	162
7	Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Current Opinion in Plant Biology, 2006, 9, 544-549.	7.1	156
8	CFL1, a WW Domain Protein, Regulates Cuticle Development by Modulating the Function of HDG1, a Class IV Homeodomain Transcription Factor, in Rice and <i>Arabidopsis </i> A. Plant Cell, 2011, 23, 3392-3411.	6.6	148
9	Targeted Degradation of the Cyclin-Dependent Kinase Inhibitor ICK4/KRP6 by RING-Type E3 Ligases Is Essential for Mitotic Cell Cycle Progression during <i>Arabidopsis</i> Gametogenesis Å. Plant Cell, 2008, 20, 1538-1554.	6.6	142
10	A High-Throughput Screening System for Arabidopsis Transcription Factors and Its Application to Med25-Dependent Transcriptional Regulation. Molecular Plant, 2011, 4, 546-555.	8.3	135
11	<i>Arabidopsis</i> RAP2.2 plays an important role in plant resistance to <ibotrytis cinerea<="" i=""> and ethylene responses. New Phytologist, 2012, 195, 450-460.</ibotrytis>	7.3	129
12	The Arabidopsis Mediator subunit <scp>MED</scp> 16 regulates iron homeostasis by associating with <scp>EIN</scp> 3/ <scp>EIL</scp> 1 through subunit <scp>MED</scp> 25. Plant Journal, 2014, 77, 838-851.	5.7	120
13	The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in <i>Arabidopsis</i> Arabidopsis	6.6	116
14	A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice. Journal of Experimental Botany, 2006, 57, 1263-1273.	4.8	112
15	Membrane-Bound RLCKs LIP1 and LIP2 Are Essential Male Factors Controlling Male-Female Attraction in Arabidopsis. Current Biology, 2013, 23, 993-998.	3.9	112
16	Peptide signalling during the pollen tube journey and double fertilization. Journal of Experimental Botany, 2015, 66, 5139-5150.	4.8	111
17	Molecular Cloning and Functional Analysis of a Novel Type of Bowman-Birk Inhibitor Gene Family in Rice. Plant Physiology, 2003, 133, 560-570.	4.8	110
18	Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Research, 2016, 26, 543-555.	12.0	109

#	Article	IF	CITATIONS
19	Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Research, 2007, 17, 249-263.	12.0	107
20	Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Plant Journal, 2007, 51, 512-525.	5.7	106
21	The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating <i>RAX</i> Genes in Arabidopsis. Plant Cell, 2015, 27, 3112-3127.	6.6	102
22	Cysteine-rich peptides promote interspecific genetic isolation in <i>Arabidopsis</i> . Science, 2019, 364, .	12.6	101
23	SERK Family Receptor-like Kinases Function as Co-receptors with PXY for Plant Vascular Development. Molecular Plant, 2016, 9, 1406-1414.	8.3	99
24	GLABRA2 Directly Suppresses Basic Helix-Loop-Helix Transcription Factor Genes with Diverse Functions in Root Hair Development. Plant Cell, 2015, 27, tpc.15.00607.	6.6	97
25	The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development. Cell Research, 2015, 25, 121-134.	12.0	93
26	Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environmental and Experimental Botany, 2009, 67, 377-386.	4.2	92
27	<scp>d</scp> - <i>myo</i> -Inositol-3-Phosphate Affects Phosphatidylinositol-Mediated Endomembrane Function in <i>Arabidopsis</i> -Inositol-3-Phosphate Affects Phosphatidylinositol-Mediated Endomembrane Function in <i>Arabidopsis</i> -Inositol-3-Phosphate Affects Phosphatidylinositol-Mediated Endomembrane Function in	6.6	92
28	LLG2/3 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity. Current Biology, 2019, 29, 3256-3265.e5.	3.9	87
29	Sperm cells are passive cargo of the pollen tube in plant fertilization. Nature Plants, 2017, 3, 17079.	9.3	84
30	Transcriptional Profiling of Rice Early Response to Magnaporthe oryzae Identified OsWRKYs as Important Regulators in Rice Blast Resistance. PLoS ONE, 2013, 8, e59720.	2.5	84
31	Maternal ENODLs Are Required for Pollen Tube Reception in Arabidopsis. Current Biology, 2016, 26, 2343-2350.	3.9	82
32	TRANSLUCENT GREEN, an ERF Family Transcription Factor, Controls Water Balance in Arabidopsis by Activating the Expression of Aquaporin Genes. Molecular Plant, 2014, 7, 601-615.	8.3	79
33	RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis. Plant Cell, 2016, 28, 55-73.	6.6	79
34	AtVPS41-mediated endocytic pathway is essential for pollen tubeâ€"stigma interaction in ⟨i>Arabidopsis⟨ i>. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6307-6312.	7.1	75
35	AtCDC5 regulates the G2 to M transition of the cell cycle and is critical for the function of Arabidopsis shoot apical meristem. Cell Research, 2007, 17, 815-828.	12.0	72
36	A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis. Plant Journal, 2010, 63, 880-888.	5.7	72

#	Article	IF	Citations
37	<i>SPOROCYTELESS</i> modulates <i>YUCCA</i> expression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 2008, 179, 751-764.	7.3	69
38	Mechanism of DNAâ€Induced Phase Separation for Transcriptional Repressor VRN1. Angewandte Chemie - International Edition, 2019, 58, 4858-4862.	13.8	69
39	Phytochrome A Mediates Rapid Red Light–Induced Phosphorylation of <i>Arabidopsis</i> FAR-RED ELONGATED HYPOCOTYL1 in a Low Fluence Response Â. Plant Cell, 2009, 21, 494-506.	6.6	67
40	RALF peptide signaling controls the polytubey block in <i>Arabidopsis</i> . Science, 2022, 375, 290-296.	12.6	65
41	Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Reports, 2007, 27, 125-135.	5.6	64
42	Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis. Molecular Plant, 2008, 1, 564-574.	8.3	63
43	Overâ€expression of <i>WOX1</i> Leads to Defects in Meristem Development and Polyamine Homeostasis in <i>Arabidopsis</i> ^F . Journal of Integrative Plant Biology, 2011, 53, 493-506.	8.5	63
44	Plant Mediator complex and its critical functions in transcription regulation. Journal of Integrative Plant Biology, 2016, 58, 106-118.	8.5	63
45	Peptide/receptor-like kinase-mediated signaling involved in male–female interactions. Current Opinion in Plant Biology, 2019, 51, 7-14.	7.1	61
46	Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytologist, 2019, 222, 687-693.	7.3	57
47	Obtaining and analysis of flanking sequences from T-DNA transformants of Arabidopsis. Plant Science, 2003, 165, 941-949.	3.6	54
48	Overexpression of the Wounding-Responsive Gene AtMYB15 Activates the Shikimate Pathway in Arabidopsis. Journal of Integrative Plant Biology, 2006, 48, 1084-1095.	8.5	52
49	The Features and Regulation of Co-transcriptional Splicing in Arabidopsis. Molecular Plant, 2020, 13, 278-294.	8.3	52
50	Engineered xCas9 and SpCas9â€NG variants broaden PAM recognition sites to generate mutations in <i>Arabidopsis</i>) plants. Plant Biotechnology Journal, 2019, 17, 1865-1867.	8.3	51
51	A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Molecular Biology, 2008, 66, 315-327.	3.9	49
52	TANDEM ZINC-FINGER/PLUS3 Is a Key Component of Phytochrome A Signaling. Plant Cell, 2018, 30, 835-852.	6.6	49
53	ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis. PLoS Genetics, 2014, 10, e1003954.	3.5	47
54	Crystal structures of the extracellular domains of the CrRLK1L receptorâ€like kinases ANXUR1 and ANXUR2. Protein Science, 2018, 27, 886-892.	7.6	47

#	Article	IF	CITATIONS
55	Two groups of MYB transcription factors share a motif which enhances trans-activation activity. Biochemical and Biophysical Research Communications, 2006, 341, 1155-1163.	2.1	44
56	The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 2008, 27, 575-584.	5.6	43
57	The Arabidopsis APC4 subunit of the anaphaseâ€promoting complex/cyclosome (APC/C) is critical for both female gametogenesis and embryogenesis. Plant Journal, 2012, 69, 227-240.	5.7	40
58	Active role of small peptides in <i>Arabidopsis</i> reproduction: Expression evidence. Journal of Integrative Plant Biology, 2015, 57, 518-521.	8.5	40
59	A Novel Imprinted Gene NUWA Controls Mitochondrial Function in Early Seed Development in Arabidopsis. PLoS Genetics, 2017, 13, e1006553.	3.5	40
60	Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49, 75-80.	8.5	38
61	How CrRLK1L Receptor Complexes Perceive RALF Signals. Trends in Plant Science, 2019, 24, 978-981.	8.8	38
62	The <i>Arabidopsis</i> Anaphaseâ€Promoting Complex/Cyclosome Subunit 1 is Critical for Both Female Gametogenesis and Embryogenesis ^F . Journal of Integrative Plant Biology, 2013, 55, 64-74.	8.5	35
63	Isocitrate lyase plays important roles in plant salt tolerance. BMC Plant Biology, 2019, 19, 472.	3.6	33
64	Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. Journal of Genetics and Genomics, 2018, 45, 155-168.	3.9	32
65	Cloning and expression analysis of Zmglp1, a new germin-like protein gene in maize. Biochemical and Biophysical Research Communications, 2005, 331, 1257-1263.	2.1	30
66	Distinguishing transgenic from non-transgenic Arabidopsis plants by 1H NMR-based metabolic fingerprinting. Journal of Genetics and Genomics, 2009, 36, 621-628.	3.9	29
67	Arabidopsis AtVPS15 Plays Essential Roles in Pollen Germination Possibly by Interacting with AtVPS34. Journal of Genetics and Genomics, 2012, 39, 81-92.	3.9	29
68	Title is missing!. Plant Cell, Tissue and Organ Culture, 1999, 58, 87-92.	2.3	28
69	Arabidopsis FHY1 Protein Stability Is Regulated by Light via Phytochrome A and 26S Proteasome. Plant Physiology, 2005, 139, 1234-1243.	4.8	27
70	Four Closelyâ€related RINGâ€type E3 Ligases, APD1â€"4, are Involved in Pollen Mitosis II Regulation in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2012, 54, 814-827.	8.5	27
71	Allelic Analyses of the <i>Arabidopsis YUC1</i> Locus Reveal Residues and Domains Essential for the Functions of YUC Family of Flavin Monooxygenases. Journal of Integrative Plant Biology, 2011, 53, 54-62.	8.5	26
72	CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis. PLoS Genetics, 2016, 12, e1005744.	3.5	22

#	Article	IF	CITATIONS
73	Virus induced gene silencing of AtCDC5 results in accelerated cell death in Arabidopsis leaves. Plant Physiology and Biochemistry, 2007, 45, 87-94.	5.8	20
74	Update on Receptors and Signaling. Plant Physiology, 2020, 182, 1527-1530.	4.8	20
75	Lack of ethylene does not affect reproductive success and synergid cell death in Arabidopsis. Molecular Plant, 2022, 15, 354-362.	8.3	19
76	VPS18-regulated vesicle trafficking controls the secretion of pectin and its modifying enzyme during pollen tube growth in Arabidopsis. Plant Cell, 2021, 33, 3042-3056.	6.6	17
77	A nuclear-encoded mitochondrial gene AtCIB22 is essential for plant development in Arabidopsis. Journal of Genetics and Genomics, 2010, 37, 667-683.	3.9	15
78	GAMT2 Encodes a Methyltransferase of Gibberellic Acid That is Involved in Seed Maturation and Germination in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49, 368-381.	8.5	14
79	C-terminal extension of calmodulin-like 3 protein from & mp;lt;italic amp;gt;Oryza sativa amp;lt;/italic amp;gt; L.: interaction with a high mobility group target protein. Acta Biochimica Et Biophysica Sinica, 2015, 47, 880-889.	2.0	14
80	Progressive chromatin silencing of ABA biosynthesis genes permits seed germination in Arabidopsis. Plant Cell, 2022, 34, 2871-2891.	6.6	14
81	Mechanism of DNAâ€Induced Phase Separation for Transcriptional Repressor VRN1. Angewandte Chemie, 2019, 131, 4912-4916.	2.0	13
82	SNAIL1 is essential for female gametogenesis in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2017, 59, 629-641.	8.5	12
83	From birth to function: Male gametophyte development in flowering plants. Current Opinion in Plant Biology, 2021, 63, 102118.	7.1	12
84	Auxins., 2017,, 39-76.		10
85	Generation and Identification of Arabidopsis EMS Mutants. Methods in Molecular Biology, 2014, 1062, 225-239.	0.9	9
86	The signals to trigger the initiation of ovule enlargement are from the pollen tubes: The direct evidence. Journal of Integrative Plant Biology, 2017, 59, 600-603.	8.5	9
87	Cysteine-rich peptides: signals for pollen tube guidance, species isolation and beyond. Science China Life Sciences, 2019, 62, 1243-1245.	4.9	9
88	AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube guidance. Plant Physiology, 2021, 186, 865-873.	4.8	9
89	Two nuclear localization signals required for the nuclear localization of rice ribosomal protein S4. Plant Science, 2002, 162, 251-256.	3.6	8
90	Stigmatic ROS: regulator of compatible pollen tube perception?. Trends in Plant Science, 2021, 26, 993-995.	8.8	8

#	Article	IF	Citations
91	Overexpression of a New Putative Membrane Protein Gene <i>AtMRB1</i> Results in Organ Size Enlargement in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2009, 51, 130-139.	8.5	7
92	Plant Hormones: Metabolism, Signaling and Crosstalk. Journal of Integrative Plant Biology, 2011, 53, 410-411.	8.5	7
93	Generation and Characterization of Arabidopsis T-DNA Insertion Mutants. Methods in Molecular Biology, 2014, 1062, 241-258.	0.9	6
94	<i>ADP1</i> affects abundance and endocytosis of PIN-FORMED proteins in <i>Arabidopsis</i> Plant Signaling and Behavior, 2015, 10, e973811.	2.4	4
95	A new protein kinase gene SSG1 is essential for adaptation of Arabidopsis to salt stress. Environmental and Experimental Botany, 2013, 86, 9-16.	4.2	3
96	Obtaining Mutant Pollen for Phenotypic Analysis and Pollen Tube Dual Staining. Methods in Molecular Biology, 2020, 2160, 181-190.	0.9	3
97	Plant reproduction: Recent discoveries from China. Journal of Integrative Plant Biology, 2017, 59, 591-593.	8.5	0
98	Semi-In Vivo Assay for Pollen Tube Attraction. Methods in Molecular Biology, 2020, 2160, 83-92.	0.9	0
99	Kingdom Come. PLoS Genetics, 2020, 16, e1009178.	3.5	O