
jeanne Mialet-Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240553/publications.pdf Version: 2024-02-01

IFANNE MIALET-DEDEZ

#	Article	IF	CITATIONS
1	Kidney inflammaging is promoted by CCR2+ macrophages and tissue-derived micro-environmental factors. Cellular and Molecular Life Sciences, 2021, 78, 3485-3501.	5.4	13
2	Selective Cardiomyocyte Oxidative Stress Leads to Bystander Senescence of Cardiac Stromal Cells. International Journal of Molecular Sciences, 2021, 22, 2245.	4.1	7
3	Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Research Reviews, 2021, 66, 101256.	10.9	44
4	Cyclic AMP-binding protein Epac1 acts as a metabolic sensor to promote cardiomyocyte lipotoxicity. Cell Death and Disease, 2021, 12, 824.	6.3	12
5	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /0	Dverlock 1	0 T <mark>f 50 5</mark> 82 T
6	Mitochondrial 4-HNE derived from MAO-A promotes mitoCa2+ overload in chronic postischemic cardiac remodeling. Cell Death and Differentiation, 2020, 27, 1907-1923.	11.2	51
7	Role of EPAC1 Signalosomes in Cell Fate: Friends or Foes?. Cells, 2020, 9, 1954.	4.1	7
8	Cellular Senescence in Renal and Urinary Tract Disorders. Cells, 2020, 9, 2420.	4.1	7
9	Rational Redesign of Monoamine Oxidase A into a Dehydrogenase to Probe ROS in Cardiac Aging. ACS Chemical Biology, 2020, 15, 1795-1800.	3.4	12
10	Cardiac monoamine oxidases: at the heart of mitochondrial dysfunction. Cell Death and Disease, 2020, 11, 54.	6.3	10
11	Clearance of senescent cells during cardiac ischemia–reperfusion injury improves recovery. Aging Cell, 2020, 19, e13249.	6.7	79
12	Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90Â+Âsubset. Aging Cell, 2019, 18, e13015.	6.7	31
13	Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovascular Research, 2019, 115, 1766-1777.	3.8	25
14	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	7.8	307
15	Body fat reduction without cardiovascular changes in mice after oral treatment with the <scp>MAO</scp> inhibitor phenelzine. British Journal of Pharmacology, 2018, 175, 2428-2440.	5.4	18
16	Tight-Binding Inhibition of Human Monoamine Oxidase B by Chromone Analogs: A Kinetic, Crystallographic, and Biological Analysis. Journal of Medicinal Chemistry, 2018, 61, 4203-4212.	6.4	58
17	Oleuropein Aglycone Protects against MAO-A-Induced Autophagy Impairment and Cardiomyocyte Death through Activation of TFEB. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	4.0	35
18	Monoamine oxidase-A, serotonin and norepinephrine: synergistic players in cardiac physiology and pathology. Journal of Neural Transmission, 2018, 125, 1627-1634.	2.8	32

JEANNE MIALET-PEREZ

#	Article	IF	CITATIONS
19	Monoamine oxidaseâ€A is a novel driver of stressâ€induced premature senescence through inhibition of parkinâ€mediated mitophagy. Aging Cell, 2018, 17, e12811.	6.7	78
20	Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death. Circulation Research, 2017, 120, 645-657.	4.5	81
21	La «Âdissection» moléculaire du remodelage cardiaqueÂ: perspectives thérapeutiques. Archives Des Maladies Du Coeur Et Des Vaisseaux - Pratique, 2017, 2017, 18-21.	0.0	0
22	Major depression and heart failure: Interest of monoamine oxidase inhibitors. International Journal of Cardiology, 2017, 247, 1-6.	1.7	26
23	Autophagy in health and disease: focus on the cardiovascular system. Essays in Biochemistry, 2017, 61, 721-732.	4.7	123
24	Monoamine Oxidases, Oxidative Stress, and Altered Mitochondrial Dynamics in Cardiac Ageing. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	4.0	76
25	High intake of dietary tyramine does not deteriorate glucose handling and does not cause adverse cardiovascular effects in mice. Journal of Physiology and Biochemistry, 2016, 72, 539-553.	3.0	6
26	Oxidative Stress by Monoamine Oxidase-A Impairs Transcription Factor EB Activation and Autophagosome Clearance, Leading to Cardiomyocyte Necrosis and Heart Failure. Antioxidants and Redox Signaling, 2016, 25, 10-27.	5.4	76
27	Platelet activation and arterial peripheral serotonin turnover in cardiac remodeling associated to aortic stenosis. American Journal of Hematology, 2015, 90, 15-19.	4.1	26
28	Gadd45 <i>γ</i> regulates cardiomyocyte death and post-myocardial infarction left ventricular remodelling. Cardiovascular Research, 2015, 108, 254-267.	3.8	39
29	Monoamine oxidases as sources of oxidants in the heart. Journal of Molecular and Cellular Cardiology, 2014, 73, 34-42.	1.9	197
30	Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice. Journal of Neural Transmission, 2013, 120, 927-935.	2.8	31
31	Anesthetic regimen for cardiac function evaluation by echocardiography in mice: comparison between ketamine, etomidate and isoflurane versus conscious state. Laboratory Animals, 2013, 47, 284-290.	1.0	29
32	First Evidence of Increased Plasma Serotonin Levels in Tako-Tsubo Cardiomyopathy. BioMed Research International, 2013, 2013, 1-5.	1.9	9
33	p53-PGC-1α Pathway Mediates Oxidative Mitochondrial Damage and Cardiomyocyte Necrosis Induced by Monoamine Oxidase-A Upregulation: Role in Chronic Left Ventricular Dysfunction in Mice. Antioxidants and Redox Signaling, 2013, 18, 5-18.	5.4	117
34	Serotonin 5-HT2A receptor-mediated hypertrophy is negatively regulated by caveolin-3 in cardiomyoblasts and neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 502-510.	1.9	21
35	Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochemical and Biophysical Research Communications, 2010, 391, 979-983.	2.1	39
36	Dose-dependent activation of distinct hypertrophic pathways by serotonin in cardiac cells. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H821-H828.	3.2	24

JEANNE MIALET-PEREZ

#	Article	IF	CITATIONS
37	Genetic deletion of MAO-A promotes serotonin-dependent ventricular hypertrophy by pressure overload. Journal of Molecular and Cellular Cardiology, 2009, 46, 587-595.	1.9	41
38	Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. Journal of Molecular and Cellular Cardiology, 2009, 46, 518-525.	1.9	76
39	Genetic Variation Within the β1-Adrenergic Receptor Gene Results in Haplotype-Specific Expression Phenotypes. Journal of Cardiovascular Pharmacology, 2008, 51, 106-110.	1.9	17
40	Genetic Variation of Human Adrenergic Receptors: From Molecular and Functional Properties to Clinical and Pharmacogenetic Implications. Current Topics in Medicinal Chemistry, 2007, 7, 217-231.	2.1	21
41	New insights on receptor-dependent and monoamine oxidase-dependent effects of serotonin in the heart. Journal of Neural Transmission, 2007, 114, 823-827.	2.8	33
42	Myocardial β1-adrenergic receptor polymorphisms affect functional recovery after ischemic injury. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1427-H1432.	3.2	34
43	A polymorphism within a conserved beta1-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11288-11293.	7.1	435
44	Differential functional effects of two 5-HT receptor isoforms in adult cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2005, 39, 335-344.	1.9	24
45	Polymorphisms of cardiac presynaptic Â2C adrenergic receptors: Diverse intragenic variability with haplotype-specific functional effects. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13020-13025.	7.1	51
46	A Primate-dominant Third Glycosylation Site of the β2-Adrenergic Receptor Routes Receptors to Degradation during Agonist Regulation. Journal of Biological Chemistry, 2004, 279, 38603-38607.	3.4	42
47	β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nature Medicine, 2003, 9, 1300-1305.	30.7	328