
## jeanne Mialet-Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240553/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF                | CITATIONS                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|
| 1  | Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O                                                                                                                                             | verlock 10<br>9.1 | ) Tf 50 742 T<br>1,43 742 T |
| 2  | A polymorphism within a conserved beta1-adrenergic receptor motif alters cardiac function and<br>beta-blocker response in human heart failure. Proceedings of the National Academy of Sciences of the<br>United States of America, 2006, 103, 11288-11293. | 7.1               | 435                         |
| 3  | β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure.<br>Nature Medicine, 2003, 9, 1300-1305.                                                                                                             | 30.7              | 328                         |
| 4  | Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal,<br>2019, 38, .                                                                                                                                            | 7.8               | 307                         |
| 5  | Monoamine oxidases as sources of oxidants in the heart. Journal of Molecular and Cellular Cardiology, 2014, 73, 34-42.                                                                                                                                     | 1.9               | 197                         |
| 6  | Autophagy in health and disease: focus on the cardiovascular system. Essays in Biochemistry, 2017, 61, 721-732.                                                                                                                                            | 4.7               | 123                         |
| 7  | p53-PGC-1α Pathway Mediates Oxidative Mitochondrial Damage and Cardiomyocyte Necrosis Induced by<br>Monoamine Oxidase-A Upregulation: Role in Chronic Left Ventricular Dysfunction in Mice.<br>Antioxidants and Redox Signaling, 2013, 18, 5-18.           | 5.4               | 117                         |
| 8  | Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death. Circulation Research, 2017, 120, 645-657.                                                                                                                                              | 4.5               | 81                          |
| 9  | Clearance of senescent cells during cardiac ischemia–reperfusion injury improves recovery. Aging<br>Cell, 2020, 19, e13249.                                                                                                                                | 6.7               | 79                          |
| 10 | Monoamine oxidaseâ€A is a novel driver of stressâ€induced premature senescence through inhibition of<br>parkinâ€mediated mitophagy. Aging Cell, 2018, 17, e12811.                                                                                          | 6.7               | 78                          |
| 11 | Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors.<br>Journal of Molecular and Cellular Cardiology, 2009, 46, 518-525.                                                                                       | 1.9               | 76                          |
| 12 | Oxidative Stress by Monoamine Oxidase-A Impairs Transcription Factor EB Activation and<br>Autophagosome Clearance, Leading to Cardiomyocyte Necrosis and Heart Failure. Antioxidants and<br>Redox Signaling, 2016, 25, 10-27.                              | 5.4               | 76                          |
| 13 | Monoamine Oxidases, Oxidative Stress, and Altered Mitochondrial Dynamics in Cardiac Ageing.<br>Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.                                                                                                 | 4.0               | 76                          |
| 14 | Tight-Binding Inhibition of Human Monoamine Oxidase B by Chromone Analogs: A Kinetic,<br>Crystallographic, and Biological Analysis. Journal of Medicinal Chemistry, 2018, 61, 4203-4212.                                                                   | 6.4               | 58                          |
| 15 | Polymorphisms of cardiac presynaptic Â2C adrenergic receptors: Diverse intragenic variability with haplotype-specific functional effects. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13020-13025.         | 7.1               | 51                          |
| 16 | Mitochondrial 4-HNE derived from MAO-A promotes mitoCa2+ overload in chronic postischemic cardiac remodeling. Cell Death and Differentiation, 2020, 27, 1907-1923.                                                                                         | 11.2              | 51                          |
| 17 | Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Research<br>Reviews, 2021, 66, 101256.                                                                                                                             | 10.9              | 44                          |
| 18 | A Primate-dominant Third Glycosylation Site of the β2-Adrenergic Receptor Routes Receptors to Degradation during Agonist Regulation. Journal of Biological Chemistry, 2004, 279, 38603-38607.                                                              | 3.4               | 42                          |

JEANNE MIALET-PEREZ

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Genetic deletion of MAO-A promotes serotonin-dependent ventricular hypertrophy by pressure overload. Journal of Molecular and Cellular Cardiology, 2009, 46, 587-595.                                       | 1.9 | 41        |
| 20 | Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochemical and Biophysical Research Communications, 2010, 391, 979-983.                            | 2.1 | 39        |
| 21 | Gadd45 <i>γ</i> regulates cardiomyocyte death and post-myocardial infarction left ventricular remodelling. Cardiovascular Research, 2015, 108, 254-267.                                                     | 3.8 | 39        |
| 22 | Oleuropein Aglycone Protects against MAO-A-Induced Autophagy Impairment and Cardiomyocyte Death through Activation of TFEB. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.                    | 4.0 | 35        |
| 23 | Myocardial β1-adrenergic receptor polymorphisms affect functional recovery after ischemic injury.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1427-H1432.             | 3.2 | 34        |
| 24 | New insights on receptor-dependent and monoamine oxidase-dependent effects of serotonin in the heart. Journal of Neural Transmission, 2007, 114, 823-827.                                                   | 2.8 | 33        |
| 25 | Monoamine oxidase-A, serotonin and norepinephrine: synergistic players in cardiac physiology and pathology. Journal of Neural Transmission, 2018, 125, 1627-1634.                                           | 2.8 | 32        |
| 26 | Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice. Journal of Neural Transmission, 2013, 120, 927-935.                                | 2.8 | 31        |
| 27 | Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90Â+Âsubset. Aging Cell, 2019, 18, e13015.                                                            | 6.7 | 31        |
| 28 | Anesthetic regimen for cardiac function evaluation by echocardiography in mice: comparison between ketamine, etomidate and isoflurane versus conscious state. Laboratory Animals, 2013, 47, 284-290.        | 1.0 | 29        |
| 29 | Platelet activation and arterial peripheral serotonin turnover in cardiac remodeling associated to aortic stenosis. American Journal of Hematology, 2015, 90, 15-19.                                        | 4.1 | 26        |
| 30 | Major depression and heart failure: Interest of monoamine oxidase inhibitors. International Journal of Cardiology, 2017, 247, 1-6.                                                                          | 1.7 | 26        |
| 31 | Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovascular Research, 2019, 115, 1766-1777.                           | 3.8 | 25        |
| 32 | Differential functional effects of two 5-HT receptor isoforms in adult cardiomyocytes. Journal of<br>Molecular and Cellular Cardiology, 2005, 39, 335-344.                                                  | 1.9 | 24        |
| 33 | Dose-dependent activation of distinct hypertrophic pathways by serotonin in cardiac cells. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H821-H828.                      | 3.2 | 24        |
| 34 | Genetic Variation of Human Adrenergic Receptors: From Molecular and Functional Properties to<br>Clinical and Pharmacogenetic Implications. Current Topics in Medicinal Chemistry, 2007, 7, 217-231.         | 2.1 | 21        |
| 35 | Serotonin 5-HT2A receptor-mediated hypertrophy is negatively regulated by caveolin-3 in<br>cardiomyoblasts and neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012,<br>52, 502-510. | 1.9 | 21        |
| 36 | Body fat reduction without cardiovascular changes in mice after oral treatment with the<br><scp>MAO</scp> inhibitor phenelzine. British Journal of Pharmacology, 2018, 175, 2428-2440.                      | 5.4 | 18        |

JEANNE MIALET-PEREZ

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Genetic Variation Within the β1-Adrenergic Receptor Gene Results in Haplotype-Specific Expression<br>Phenotypes. Journal of Cardiovascular Pharmacology, 2008, 51, 106-110.                 | 1.9 | 17        |
| 38 | Kidney inflammaging is promoted by CCR2+ macrophages and tissue-derived micro-environmental factors. Cellular and Molecular Life Sciences, 2021, 78, 3485-3501.                             | 5.4 | 13        |
| 39 | Rational Redesign of Monoamine Oxidase A into a Dehydrogenase to Probe ROS in Cardiac Aging. ACS<br>Chemical Biology, 2020, 15, 1795-1800.                                                  | 3.4 | 12        |
| 40 | Cyclic AMP-binding protein Epac1 acts as a metabolic sensor to promote cardiomyocyte lipotoxicity.<br>Cell Death and Disease, 2021, 12, 824.                                                | 6.3 | 12        |
| 41 | Cardiac monoamine oxidases: at the heart of mitochondrial dysfunction. Cell Death and Disease, 2020, 11, 54.                                                                                | 6.3 | 10        |
| 42 | First Evidence of Increased Plasma Serotonin Levels in Tako-Tsubo Cardiomyopathy. BioMed Research<br>International, 2013, 2013, 1-5.                                                        | 1.9 | 9         |
| 43 | Role of EPAC1 Signalosomes in Cell Fate: Friends or Foes?. Cells, 2020, 9, 1954.                                                                                                            | 4.1 | 7         |
| 44 | Cellular Senescence in Renal and Urinary Tract Disorders. Cells, 2020, 9, 2420.                                                                                                             | 4.1 | 7         |
| 45 | Selective Cardiomyocyte Oxidative Stress Leads to Bystander Senescence of Cardiac Stromal Cells.<br>International Journal of Molecular Sciences, 2021, 22, 2245.                            | 4.1 | 7         |
| 46 | High intake of dietary tyramine does not deteriorate glucose handling and does not cause adverse cardiovascular effects in mice. Journal of Physiology and Biochemistry, 2016, 72, 539-553. | 3.0 | 6         |
| 47 | La «Âdissection» moléculaire du remodelage cardiaqueÂ: perspectives thérapeutiques. Archives Des<br>Maladies Du Coeur Et Des Vaisseaux - Pratique, 2017, 2017, 18-21.                       | 0.0 | Ο         |