
Vicent CasadÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3240260/publications.pdf Version: 2024-02-01

VICENT CASADÃ3

#	Article	IF	CITATIONS
1	Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. Journal of Neuroscience, 2006, 26, 2080-2087.	3.6	553
2	G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. Pharmacological Reviews, 2014, 66, 413-434.	16.0	497
3	Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2Receptors. Journal of Biological Chemistry, 2002, 277, 18091-18097.	3.4	450
4	Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8606-8611.	7.1	419
5	Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11940-11945.	7.1	345
6	Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nature Methods, 2008, 5, 727-733.	19.0	269
7	Striatal Adenosine A2A and Cannabinoid CB1 Receptors Form Functional Heteromeric Complexes that Mediate the Motor Effects of Cannabinoids. Neuropsychopharmacology, 2007, 32, 2249-2259.	5.4	229
8	Cell surface adenosine deaminase: Much more than an ectoenzyme. Progress in Neurobiology, 1997, 52, 283-294.	5.7	224
9	ldentification of Dopamine D1–D3 Receptor Heteromers. Journal of Biological Chemistry, 2008, 283, 26016-26025.	3.4	216
10	Cannabinoid Receptors CB1 and CB2 Form Functional Heteromers in Brain. Journal of Biological Chemistry, 2012, 287, 20851-20865.	3.4	196
11	Combining Mass Spectrometry and Pull-Down Techniques for the Study of Receptor Heteromerization. Direct Epitopeâ^ Epitope Electrostatic Interactions between Adenosine A2Aand Dopamine D2Receptors. Analytical Chemistry, 2004, 76, 5354-5363.	6.5	195
12	Metabotropic Glutamate $1\hat{l}_{\pm}$ and Adenosine A1 Receptors Assemble into Functionally Interacting Complexes. Journal of Biological Chemistry, 2001, 276, 18345-18351.	3.4	170
13	Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology, 2008, 55, 190-197.	4.1	157
14	Direct involvement of Ïf-1 receptors in the dopamine D ₁ receptor-mediated effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18676-18681.	7.1	153
15	A ₁ Adenosine Receptors Accumulate in Neurodegenerative Structures in Alzheimer's Disease and Mediate Both Amyloid Precursor Protein Processing and Tau Phosphorylation and Translocation. Brain Pathology, 2003, 13, 440-451.	4.1	150
16	Evidence for Adenosine/Dopamine Receptor Interactions Indications for Heteromerization. Neuropsychopharmacology, 2000, 23, S50-S59.	5.4	147
17	Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. Journal of Neurochemistry, 2005, 95, 919-929.	3.9	140
18	Marked changes in signal transduction upon heteromerization of dopamine D ₁ and histamine H ₃ receptors. British Journal of Pharmacology, 2009, 157, 64-75.	5.4	138

VICENT CASADÃ³

#	Article	IF	CITATIONS
19	Allosteric interactions between agonists and antagonists within the adenosine A _{2A} receptor-dopamine D ₂ receptor heterotetramer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3609-18.	7.1	135
20	Adenosine A2A-dopamine D2 receptor–receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism and Related Disorders, 2004, 10, 265-271.	2.2	132
21	Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland. PLoS Biology, 2012, 10, e1001347.	5.6	132
22	Adenosine A _{2A} Receptor-Antagonist/Dopamine D ₂ Receptor-Agonist Bivalent Ligands as Pharmacological Tools to Detect A _{2A} -D ₂ Receptor Heteromers. Journal of Medicinal Chemistry, 2009, 52, 5590-5602.	6.4	129
23	A1R–A2AR heteromers coupled to Cs and Gi/O proteins modulate GABA transport into astrocytes. Purinergic Signalling, 2013, 9, 433-449.	2.2	123
24	Immunological identification of A1adenosine receptors in brain cortex. Journal of Neuroscience Research, 1995, 42, 818-828.	2.9	121
25	Striatal Pre- and Postsynaptic Profile of Adenosine A2A Receptor Antagonists. PLoS ONE, 2011, 6, e16088.	2.5	115
26	Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D ₁ -D ₃ Receptor Heterotetramer. Molecular Pharmacology, 2014, 86, 417-429.	2.3	114
27	Group I Metabotropic Glutamate Receptors Mediate a Dual Role of Glutamate in T Cell Activation. Journal of Biological Chemistry, 2004, 279, 33352-33358.	3.4	113
28	Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers. PLoS ONE, 2013, 8, e61245.	2.5	112
29	Dopamine D1-histamine H3 Receptor Heteromers Provide a Selective Link to MAPK Signaling in GABAergic Neurons of the Direct Striatal Pathway. Journal of Biological Chemistry, 2011, 286, 5846-5854.	3.4	109
30	Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment. Psychopharmacology, 2009, 206, 313-324.	3.1	108
31	Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Translational Psychiatry, 2015, 5, e549-e549.	4.8	106
32	Detection of Heteromers Formed by Cannabinoid CB ₁ , Dopamine D ₂ , and Adenosine A _{2A} G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer. Scientific World Journal, The, 2008, 8, 1088-1097.	2.1	105
33	Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase. Nature Communications, 2018, 9, 1242.	12.8	103
34	Interactions between Intracellular Domains as Key Determinants of the Quaternary Structure and Function of Receptor Heteromers. Journal of Biological Chemistry, 2010, 285, 27346-27359.	3.4	102
35	Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biology, 2016, 14, 26.	3.8	97
36	The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet?. Frontiers in Pharmacology, 2019, 10, 339.	3.5	91

#	Article	IF	CITATIONS
37	Heterodimeric adenosine receptors: a device to regulate neurotransmitter release. Cellular and Molecular Life Sciences, 2006, 63, 2427-2431.	5.4	88
38	Involvement of Caveolin in Ligand-Induced Recruitment and Internalization of A ₁ Adenosine Receptor and Adenosine Deaminase in an Epithelial Cell Line. Molecular Pharmacology, 2001, 59, 1314-1323.	2.3	84
39	GPCR homomers and heteromers: A better choice as targets for drug development than GPCR monomers?. , 2009, 124, 248-257.		84
40	Basic Concepts in G-Protein-Coupled Receptor Homo- and Heterodimerization. Scientific World Journal, The, 2007, 7, 48-57.	2.1	83
41	l-DOPA-treatment in primates disrupts the expression of A2A adenosine–CB1 cannabinoid–D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology, 2014, 79, 90-100.	4.1	83
42	Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease. Journal of Neurochemistry, 2004, 91, 547-557.	3.9	78
43	l-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Experimental Neurology, 2014, 253, 180-191.	4.1	77
44	Allosteric mechanisms within the adenosine A2A–dopamine D2 receptor heterotetramer. Neuropharmacology, 2016, 104, 154-160.	4.1	77
45	The Two-State Dimer Receptor Model: A General Model for Receptor Dimers. Molecular Pharmacology, 2006, 69, 1905-1912.	2.3	76
46	Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends in Biochemical Sciences, 2003, 28, 238-243.	7.5	74
47	Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Heterotetramers and Adenylyl Cyclase. Frontiers in Pharmacology, 2018, 9, 243.	3.5	73
48	Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: The receptor–dimer cooperativity index. , 2007, 116, 343-354.		70
49	Cross-communication between Gi and Gs in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain. BMC Biology, 2018, 16, 24.	3.8	70
50	Receptor–receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. Journal of Neural Transmission, 2007, 114, 93-104.	2.8	69
51	Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A2A receptors. European Heart Journal, 2011, 32, 721-729.	2.2	67
52	Cocaine Disrupts Histamine H ₃ Receptor Modulation of Dopamine D ₁ Receptor Signaling: σ ₁ -D ₁ -H ₃ Receptor Complexes as Key Targets for Reducing Cocaine's Effects. Journal of Neuroscience, 2014, 34, 3545-3558.	3.6	66
53	Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine. Journal of Neuroscience, 2015, 35, 6639-6653.	3.6	66
54	Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors. Journal of Biological Chemistry, 2009, 284, 28058-28068.	3.4	65

VICENT CASADÃ³

#	Article	IF	CITATIONS
55	Solubilization of A1adenosine receptor from pig brain: Characterization and evidence of the role of the cell membrane on the coexistence of high- and low-affinity states. Journal of Neuroscience Research, 1990, 26, 461-473.	2.9	64
56	Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans. Neuropharmacology, 2013, 67, 476-484.	4.1	64
57	Pivotal Role of Adenosine Neurotransmission in Restless Legs Syndrome. Frontiers in Neuroscience, 2017, 11, 722.	2.8	64
58	The Heat Shock Cognate Protein hsc73 Assembles with A 1 Adenosine Receptors To Form Functional Modules in the Cell Membrane. Molecular and Cellular Biology, 2000, 20, 5164-5174.	2.3	62
59	Adenosine A2A receptors are expressed in human atrial myocytes and modulate spontaneous sarcoplasmic reticulum calcium release. Cardiovascular Research, 2006, 72, 292-302.	3.8	62
60	Dimer-based model for heptaspanning membrane receptors. Trends in Biochemical Sciences, 2005, 30, 360-366.	7.5	60
61	Gâ€proteinâ€coupled receptor heteromers: function and ligand pharmacology. British Journal of Pharmacology, 2008, 153, S90-8.	5.4	60
62	Adenosine Deaminase Interacts with A ₁ Adenosine Receptors in Pig Brain Cortical Membranes. Journal of Neurochemistry, 1996, 66, 1675-1682.	3.9	58
63	Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase–CD26 interaction. Biochemical Journal, 2002, 361, 203-209.	3.7	57
64	Molecular mechanisms involved in the adenosine A1 and A2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. Journal of Neurochemistry, 2005, 92, 337-348.	3.9	56
65	Moonlighting Adenosine Deaminase: A Target Protein for Drug Development. Medicinal Research Reviews, 2015, 35, 85-125.	10.5	54
66	Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins. Frontiers in Pharmacology, 2018, 9, 106.	3.5	54
67	Allosteric Modulation of Dopamine D2Receptors by Homocysteine. Journal of Proteome Research, 2006, 5, 3077-3083.	3.7	53
68	Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum. Neuropsychopharmacology, 2018, 43, 964-977.	5.4	52
69	ATP-Sensitive K + Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A 1 Adenosine Receptors. Molecular and Cellular Biology, 2004, 24, 2710-2719.	2.3	51
70	Intracellular Calcium Levels Determine Differential Modulation of Allosteric Interactions within G Protein-Coupled Receptor Heteromers. Chemistry and Biology, 2014, 21, 1546-1556.	6.0	51
71	Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biology, 2020, 18, 9.	3.8	51
72	Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia. Molecular Neurobiology, 2015, 52, 1408-1420.	4.0	49

#	Article	IF	CITATIONS
73	Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opinion on Drug Discovery, 2016, 11, 641-664.	5.0	49
74	G Protein-Coupled Receptor Heteromers as New Targets for Drug Development. Progress in Molecular Biology and Translational Science, 2010, 91, 41-52.	1.7	46
75	NCS-1 associates with adenosine A2A receptors and modulates receptor function. Frontiers in Molecular Neuroscience, 2012, 5, 53.	2.9	46
76	Human adenosine deaminase as an allosteric modulator of human A ₁ adenosine receptor: abolishment of negative cooperativity for [³ H](R)â€pia binding to the caudate nucleus. Journal of Neurochemistry, 2008, 107, 161-170.	3.9	45
77	Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function. Frontiers in Neuroanatomy, 2011, 5, 36.	1.7	44
78	Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 4537-4550.	4.0	44
79	A Significant Role of the Truncated Chrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons. Journal of Biological Chemistry, 2016, 291, 13048-13062.	3.4	41
80	Opioid–galanin receptor heteromers mediate the dopaminergic effects of opioids. Journal of Clinical Investigation, 2019, 129, 2730-2744.	8.2	41
81	Therapeutic targeting of HER2–CB ₂ R heteromers in HER2-positive breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3863-3872.	7.1	40
82	Novel Ergopeptides as Dual Ligands for Adenosine and Dopamine Receptors. Journal of Medicinal Chemistry, 2007, 50, 3062-3069.	6.4	39
83	Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. Agonist–antagonist binding modulation. Biochemical Pharmacology, 2009, 78, 1456-1463.	4.4	39
84	The Cluster-Arranged Cooperative Model:Â A Model That Accounts for the Kinetics of Binding to A1Adenosine Receptorsâ€. Biochemistry, 1996, 35, 3007-3015.	2.5	38
85	A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase. Biochemical Journal, 2011, 435, 701-709.	3.7	37
86	Adenosine A1-Dopamine D1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron. Molecular Neurobiology, 2019, 56, 797-811.	4.0	36
87	The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors. FASEB Journal, 2013, 27, 1048-1061.	0.5	35
88	Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase‒CD26 interaction. Biochemical Journal, 2002, 361, 203.	3.7	34
89	Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area. Journal of Neuroscience, 2017, 37, 1176-1186.	3.6	34
90	Cannabis Users Show Enhanced Expression of CB1-5HT2A Receptor Heteromers in Olfactory Neuroepithelium Cells. Molecular Neurobiology, 2018, 55, 6347-6361.	4.0	34

#	Article	IF	CITATIONS
91	Design of a True Bivalent Ligand with Picomolar Binding Affinity for a G Protein-Coupled Receptor Homodimer. Journal of Medicinal Chemistry, 2018, 61, 9335-9346.	6.4	34
92	Biased G Protein-Independent Signaling of Dopamine D1-D3 Receptor Heteromers in the Nucleus Accumbens. Molecular Neurobiology, 2019, 56, 6756-6769.	4.0	33
93	The Adenosine Receptors Present on the Plasma Membrane of Chromaffin Cells Are of the A2bSubtype. Journal of Neurochemistry, 1992, 59, 425-431.	3.9	32
94	Novel pharmacological targets based on receptor heteromers. Brain Research Reviews, 2008, 58, 475-482.	9.0	32
95	Evidence for the heterotetrameric structure of the adenosine A2A–dopamine D2 receptor complex. Biochemical Society Transactions, 2016, 44, 595-600.	3.4	31
96	Homodimerization of adenosine A1 receptors in brain cortex explains the biphasic effects of caffeine. Neuropharmacology, 2013, 71, 56-69.	4.1	30
97	Post-translational Membrane Insertion of Tail-anchored Transmembrane EF-hand Ca2+ Sensor Calneurons Requires the TRC40/Asna1 Protein Chaperone. Journal of Biological Chemistry, 2011, 286, 36762-36776.	3.4	28
98	α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands. Molecular Neurobiology, 2018, 55, 8438-8454.	4.0	26
99	Partners for Adenosine A ₁ Receptors. Journal of Molecular Neuroscience, 2005, 26, 221-232.	2.3	25
100	Heptaspanning Membrane Receptors and Cytoskeletal/Scaffolding Proteins: Focus on Adenosine, Dopamine, and Metabotropic Glutamate Receptor Function. Journal of Molecular Neuroscience, 2005, 26, 277-292.	2.3	25
101	Gâ€Proteinâ€Coupled Receptor Heteromers as Key Players in the Molecular Architecture of the Central Nervous System. CNS Neuroscience and Therapeutics, 2014, 20, 703-709.	3.9	23
102	Equilibrative nucleoside transporter ENT1 as a biomarker of Huntington disease. Neurobiology of Disease, 2016, 96, 47-53.	4.4	21
103	Oligomerization of G protein-coupled receptors: Still doubted?. Progress in Molecular Biology and Translational Science, 2020, 169, 297-321.	1.7	20
104	Modulation of dopamine D1 receptors via histamine H3 receptors is a novel therapeutic target for Huntington's disease. ELife, 2020, 9, .	6.0	20
105	A method for binding parameters estimation of A1 adenosine receptor subtype: A practical approach. Analytical Biochemistry, 1990, 184, 117-123.	2.4	18
106	Altered Signaling in CB1R-5-HT2AR Heteromers in Olfactory Neuroepithelium Cells of Schizophrenia Patients is Modulated by Cannabis Use. Schizophrenia Bulletin, 2020, 46, 1547-1557.	4.3	17
107	Indoloquinolizidine–Peptide Hybrids as Multiple Agonists for D ₁ and D ₂ Dopamine Receptors. ChemMedChem, 2009, 4, 1514-1522.	3.2	16
108	Modulation of GABA Transport by Adenosine A1R-A2AR Heteromers, Which Are Coupled to Both Gs- and Gi/o-Proteins. Journal of Neuroscience, 2011, 31, 15629-15639.	3.6	16

#	Article	IF	CITATIONS
109	A new D2 dopamine receptor agonist allosterically modulates A2A adenosine receptor signalling by interacting with the A2A/D2 receptor heteromer. Cellular Signalling, 2012, 24, 951-960.	3.6	16
110	Modulation of adenosine agonist [3H]N6-(R)-phenylisopropyladenosine binding to pig brain cortical membranes by changes of membrane fluidity and of medium physicochemical characteristics. European Journal of Pharmacology, 1992, 225, 7-14.	2.6	15
111	Reinterpreting anomalous competitive binding experiments within G protein-coupled receptor homodimers using a dimer receptor model. Pharmacological Research, 2019, 139, 337-347.	7.1	15
112	G _i protein coupling to adenosine A ₁ –A _{2A} receptor heteromers in human brain caudate nucleus. Journal of Neurochemistry, 2010, 114, 972-980.	3.9	14
113	Identification of BiP as a CB ₁ Receptor-Interacting Protein That Fine-Tunes Cannabinoid Signaling in the Mouse Brain. Journal of Neuroscience, 2021, 41, 7924-7941.	3.6	14
114	Effect of phospholipases and proteases on the [3H]N6-(R)-phenylisopropyladenosine ([3H]R-PIA) binding to A1 adenosine receptors from pig cerebral cortex. Journal of Cellular Biochemistry, 1991, 47, 278-288.	2.6	13
115	A Hybrid Indoloquinolizidine Peptide as Allosteric Modulator of Dopamine D1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 876-885.	2.5	13
116	Biotin Ergopeptide Probes for Dopamine Receptors. Journal of Medicinal Chemistry, 2011, 54, 1080-1090.	6.4	13
117	Revisiting the Functional Role of Dopamine D4 Receptor Gene Polymorphisms: Heteromerization-Dependent Gain of Function of the D4.7 Receptor Variant. Molecular Neurobiology, 2019, 56, 4778-4785.	4.0	13
118	Heterobivalent Ligand for the Adenosine A _{2A} –Dopamine D ₂ Receptor Heteromer. Journal of Medicinal Chemistry, 2022, 65, 616-632.	6.4	13
119	Ecto-adenosine deaminase: An ecto-enzyme and a costimulatory protein acting on a variety of cell surface receptors. , 1998, 45, 261-268.		12
120	Adenosine/dopamine receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 296-302.	2.9	11
121	A solid-phase combinatorial approach for indoloquinolizidine-peptides with high affinity at D1 and D2 dopamine receptors. European Journal of Medicinal Chemistry, 2015, 97, 173-180.	5.5	11
122	Preferential Gs protein coupling of the galanin Gal1 receptor in the µ-opioid-Gal1 receptor heterotetramer. Pharmacological Research, 2022, 182, 106322.	7.1	11
123	The distribution of A1 adenosine receptor and 5?-nucleotidase in pig brain cortex subcellular fractions. Neurochemical Research, 1992, 17, 129-139.	3.3	10
124	Role of Histidine Residues in Agonist and Antagonist Binding Sites of A1Adenosine Receptor. Journal of Neurochemistry, 1993, 60, 1525-1533.	3.9	10
125	Detection of Receptor Heteromers Involving Dopamine Receptors by the Sequential BRET-FRET Technology. Methods in Molecular Biology, 2013, 964, 95-105.	0.9	10
126	Complexes of Ghrelin GHS-R1a, GHS-R1b, and Dopamine D ₁ Receptors Localized in the Ventral Tegmental Area as Main Mediators of the Dopaminergic Effects of Ghrelin. Journal of Neuroscience, 2022, 42, 940-953.	3.6	10

#	Article	IF	CITATIONS
127	Orally Active Peptide Vector Allows Using Cannabis to Fight Pain While Avoiding Side Effects. Journal of Medicinal Chemistry, 2021, 64, 6937-6948.	6.4	9
128	The heterotetrameric structure of the adenosine A1-dopamine D1 receptor complex: Pharmacological implication for restless legs syndrome. Advances in Pharmacology, 2019, 84, 37-78.	2.0	8
129	Hints on the Lateralization of Dopamine Binding to D1 Receptors in Rat Striatum. Molecular Neurobiology, 2016, 53, 5436-5445.	4.0	7
130	Targeting the receptor-based interactome of the dopamine D1 receptor: looking for heteromer-selective drugs. Expert Opinion on Drug Discovery, 2019, 14, 1297-1312.	5.0	7
131	Unmasking allosteric-binding sites: novel targets for GPCR drug discovery. Expert Opinion on Drug Discovery, 2022, 17, 897-923.	5.0	7
132	Platforms for the identification of GPCR targets, and of orthosteric and allosteric modulators. Expert Opinion on Drug Discovery, 2010, 5, 391-403.	5.0	6
133	Heteromerization between α2A adrenoceptors and different polymorphic variants of the dopamine D4 receptor determines pharmacological and functional differences. Implications for impulsive-control disorders. Pharmacological Research, 2021, 170, 105745.	7.1	6
134	Distribution of A1-adenosine receptors, adenosine deaminase and 5â€2-nucleotidase in brain and other tissues of the pig. Biochemical Society Transactions, 1990, 18, 639-641.	3.4	2
135	A1 Adenosine receptors can occur manifesting two kinetic components of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX) binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 485-491.	3.0	2
136	Reply: Does the adenosine A2A receptor stimulate the ryanodine receptor?. Cardiovascular Research, 2007, 73, 249-250.	3.8	2
137	Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics. Scientific World Journal, The, 2011, 11, 1995-2010.	2.1	2
138	Caffeine, Adenosine A 1 Receptors, and Brain Cortex. Molecular Aspects. , 2016, , 741-752.		0
139	Allosteric Mechanisms in the Adenosine A2A-Dopamine D2 Receptor Heteromer. Current Topics in Neurotoxicity, 2015, , 27-38.	0.4	0