Bal L Lokeshwar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3239837/publications.pdf

Version: 2024-02-01

159585 149698 7,951 67 30 56 citations h-index g-index papers 67 67 67 17576 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Design, Synthesis, and Molecular Docking Studies of Curcumin Hybrid Conjugates as Potential Therapeutics for Breast Cancer. Pharmaceuticals, 2022, 15, 451.	3.8	11
2	Molecular Oncology of Bladder Cancer from Inception to Modern Perspective. Cancers, 2022, 14, 2578.	3.7	9
3	Spice up your food for cancer prevention: Cancer chemo-prevention by natural compounds from common dietary spices., 2021,, 275-308.		3
4	G protein $\hat{I}^2\hat{I}^3$ translocation to the Golgi apparatus activates MAPK via p110 \hat{I}^3 -p101 heterodimers. Journal of Biological Chemistry, 2021, 296, 100325.	3.4	12
5	Targeting Mitochondrial Metabolism in Prostate Cancer with Triterpenoids. International Journal of Molecular Sciences, 2021, 22, 2466.	4.1	14
6	ARRB1 Regulates Metabolic Reprogramming to Promote Glycolysis in Stem Cell-Like Bladder Cancer Cells. Cancers, 2021, 13, 1809.	3.7	10
7	RAD51AP1 Loss Attenuates Colorectal Cancer Stem Cell Renewal and Sensitizes to Chemotherapy. Molecular Cancer Research, 2021, 19, 1486-1497.	3.4	13
8	<i>RAD51AP1</i> Deficiency Reduces Tumor Growth by Targeting Stem Cell Self-Renewal. Cancer Research, 2020, 80, 3855-3866.	0.9	19
9	The Role of \hat{I}^2 -Arrestins in Regulating Stem Cell Phenotypes in Normal and Tumorigenic Cells. International Journal of Molecular Sciences, 2020, 21, 9310.	4.1	6
10	A Novel Splice Variant of HYAL-4 Drives Malignant Transformation and Predicts Outcome in Patients with Bladder Cancer. Clinical Cancer Research, 2020, 26, 3455-3467.	7.0	13
11	Atypical chemokine receptors in tumor cell growth and metastasis. Advances in Cancer Research, 2020, 145, 1-27.	5.0	22
12	Promotion of epithelial hyperplasia by interleukinâ€8—CXCR axis in human prostate. Prostate, 2020, 80, 938-949.	2.3	10
13	\hat{l}^2 -Arrestins Regulate Stem Cell-Like Phenotype and Response to Chemotherapy in Bladder Cancer. Molecular Cancer Therapeutics, 2019, 18, 801-811.	4.1	27
14	Inhibition of androgen receptor promotes CXC-chemokine receptor 7-mediated prostate cancer cell survival. Scientific Reports, 2017, 7, 3058.	3.3	18
15	The andean anticancer herbal product BIRM causes destabilization of androgen receptor and induces caspase-8 mediated-apoptosis in prostate cancer. Oncotarget, 2016, 7, 84201-84213.	1.8	11
16	Bioactive natural products for chemoprevention and treatment of castration-resistant prostate cancer. Seminars in Cancer Biology, 2016, 40-41, 160-169.	9.6	68
17	\hat{l}^2 -Arrestin-2 Counters CXCR7-Mediated EGFR Transactivation and Proliferation. Molecular Cancer Research, 2016, 14, 493-503.	3.4	32
18	Combined Inhibition of DNMT and HDAC Blocks the Tumorigenicity of Cancer Stem-like Cells and Attenuates Mammary Tumor Growth. Cancer Research, 2016, 76, 3224-3235.	0.9	122

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	Polyphenol-rich extract of <i>Pimenta dioica </i> berries (Allspice) kills breast cancer cells by autophagy and delays growth of triple negative breast cancer in athymic mice. Oncotarget, 2015, 6, 16379-16395.	1.8	32
21	A multi-targeted approach to suppress tumor-promoting inflammation. Seminars in Cancer Biology, 2015, 35, S151-S184.	9.6	95
22	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
23	Abstract 4993: \hat{l}^2 -arrestin-2 regulates CXCR7-mediated EGFR transactivation and tumor cell proliferation in prostate cancer cells. , 2015, , .		0
24	The chemokine receptor CXCR7 interacts with EGFR to promote breast cancer cell proliferation. Molecular Cancer, 2014, 13, 198.	19.2	82
25	Use of shRNA for Stable Suppression of Chemokine Receptor Expression and Function in Human Cancer Cell Lines. Methods in Molecular Biology, 2014, 1172, 209-218.	0.9	9
26	Abstract 3336: The heterotypic interaction between CXCR7 and EGFR is an alternative proliferation mechanism in breast cancer. , 2014, , .		1
27	Ericifolin: a novel antitumor compound from allspice that silences androgen receptor in prostate cancer. Carcinogenesis, 2013, 34, 1822-1832.	2.8	29
28	$510\mathrm{WNT}$ SIGNALING PROTEIN (WISP2/CCN5) STIMULATES ANGIOGENESIS AND INVASION IN PROSTATE CANCER. Journal of Urology, $2013,189,.$	0.4	0
29	Chemokines and Chemokine Receptors as Promoters of Prostate Cancer Growth and Progression. Critical Reviews in Eukaryotic Gene Expression, 2013, 23, 77-91.	0.9	64
30	Effect of Wnt-1 induced signaling protein-2 (Wisp-2/CCN5) on angiogenesis and invasion in prostate cancer Journal of Clinical Oncology, 2013, 31, 164-164.	1.6	0
31	Abstract C210: Atypical chemokine receptor 3/CXCR7 and EGFR interact to control breast cancer growth , 2013, , .		0
32	Medicinal Properties of the Jamaican Pepper Plant Pimenta dioica and Allspice. Current Drug Targets, 2012, 13, 1900-1906.	2.1	56
33	Achyranthes aspera (Apamarg) leaf extract inhibits human pancreatic tumor growth in athymic mice by apoptosis. Journal of Ethnopharmacology, 2012, 142, 523-530.	4.1	18
34	Abstract 576: Novel compounds from Allspice (Pimenta dioica) inhibit breast cancer growth by autophagy induction. , $2012, $, .		0
35	Chemically modified non-antimicrobial tetracyclines are multifunctional drugs against advanced cancersa †. Pharmacological Research, 2011, 63, 146-150.	7.1	52
36	The IL-8–Regulated Chemokine Receptor CXCR7 Stimulates EGFR Signaling to Promote Prostate Cancer Growth. Cancer Research, 2011, 71, 3268-3277.	0.9	160

3

#	Article	IF	CITATIONS
37	Abstract 5572: An aqueous extract of allspice (Pimenta dioica) suppresses androgen receptor expression and prostate cancer growth. , $2011, \dots$		0
38	Abstract 1128: Interleukin-8 increases CXCR7 by non-cononical activation of NF-kb pathway in prostate cancer., 2011,,.		0
39	Abstract 5589: An aqueous extract of Allspice (berries of Pimenta dioica) inhibits breast cancer growth through autophagy by targeting the estrogen receptor., 2011,,.		0
40	Role of Chemokines and Chemokine Receptors in Prostate Cancer Development and Progression. Journal of Cancer Science & Therapy, 2010, 02, 89-94.	1.7	30
41	CXC Receptor-1 Silencing Inhibits Androgen-Independent Prostate Cancer. Cancer Research, 2009, 69, 8265-8274.	0.9	43
42	Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs. Molecular Cancer, 2009, 8, 57.	19.2	87
43	CHEMOKINE RECEPTOR CXCR7 IS A MOLECULAR DETERMINANT OF BLADDER CANCER. Journal of Urology, 2009, 181, 303-303.	0.4	0
44	IS CXCR-4 A NEW PROGNOSTIC AND METASTATIC MARKER IN RENAL CELL CARCINOMA?. Journal of Urology, 2008, 179, 139-139.	0.4	2
45	OSTEOPONTIN AND INTERLEUKIN-8 EXPRESSION IS INDEPENDENTLY ASSOCIATED WITH PROSTATE CANCER RECURRENCE. Journal of Urology, 2008, 179, 719-720.	0.4	2
46	Epigenetic Regulation of HYAL-1 Hyaluronidase Expression. Journal of Biological Chemistry, 2008, 283, 29215-29227.	3.4	37
47	Osteopontin and Interleukin-8 Expression is Independently Associated with Prostate Cancer Recurrence. Clinical Cancer Research, 2008, 14, 4111-4118.	7.0	57
48	Interleukin-8 Is a Molecular Determinant of Androgen Independence and Progression in Prostate Cancer. Cancer Research, 2007, 67, 6854-6862.	0.9	243
49	Insulin-like growth factors and their binding proteins in prostate cancer: Cause or consequence?â~†. Urologic Oncology: Seminars and Original Investigations, 2006, 24, 294-306.	1.6	48
50	Cyclooxygenase-2 (cox-2) expression is an independent predictor of prostate cancer recurrence. International Journal of Cancer, 2006, 119, 1082-1087.	5.1	71
51	HYAL1-v1, An Alternatively Spliced Variant of HYAL1 Hyaluronidase: A Negative Regulator of Bladder Cancer. Cancer Research, 2006, 66, 11219-11227.	0.9	56
52	HYAL1 Hyaluronidase in Prostate Cancer: A Tumor Promoter and Suppressor. Cancer Research, 2005, 65, 7782-7789.	0.9	153
53	Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. International Journal of Cancer, 2005, 115, 484-492.	5.1	98
54	HYAL1 Hyaluronidase: A Molecular Determinant of Bladder Tumor Growth and Invasion. Cancer Research, 2005, 65, 2243-2250.	0.9	124

#	Article	IF	CITATIONS
55	The prostate 25-hydroxyvitamin D-1Â-hydroxylase is not influenced by parathyroid hormone and calcium: implications for prostate cancer chemoprevention by vitamin D. Carcinogenesis, 2004, 25, 967-971.	2.8	69
56	Inhibition of Cyclooxygenase (COX)-2 Expression by Tet-Inducible COX-2 Antisense cDNA in Hormone-Refractory Prostate Cancer Significantly Slows Tumor Growth and Improves Efficacy of Chemotherapeutic Drugs. Clinical Cancer Research, 2004, 10, 8037-8047.	7.0	59
57	Evaluation of Vitamin D Analogs as Therapeutic Agents for Prostate Cancer. Recent Results in Cancer Research, 2003, 164, 273-288.	1.8	31
58	25-Hydroxyvitamin D-1α-hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene transfer. Journal of Steroid Biochemistry and Molecular Biology, 2002, 81, 135-140.	2.5	106
59	Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral nonâ€antimicrobial tetracycline analog (COLâ€3) in a metastatic prostate cancer model. International Journal of Cancer, 2002, 98, 297-309.	5.1	149
60	Anticancer Drug-Induced Apoptosis and Cytotoxicity in Prostate Cancer Cells Are Modulated by Organ-Specific Stromal Cell Factors. Scientific World Journal, The, 2001, 1, 59-59.	2.1	1
61	Stromal and Epithelial Expression of Tumor Markers Hyaluronic Acid and HYAL1 Hyaluronidase in Prostate Cancer. Journal of Biological Chemistry, 2001, 276, 11922-11932.	3.4	274
62	Cytotoxic Activity and Inhibition of Tumor Cell Invasion by Derivatives of a Chemically Modified Tetracycline CMT-3 (COL-3). Current Medicinal Chemistry, 2001, 8, 271-279.	2.4	65
63	MMP Inhibition in Prostate Cancer. Annals of the New York Academy of Sciences, 1999, 878, 271-289.	3.8	140
64	Interaction between Stromal Cells and Tumor Cells Induces Chemoresistance and Matrix Metalloproteinase Secretion. Annals of the New York Academy of Sciences, 1999, 878, 642-646.	3.8	13
65	CMT-3, a Chemically Modified Tetracycline, Inhibits Bony Metastases and Delays the Development of Paraplegia in a Rat Model of Prostate Cancer. Annals of the New York Academy of Sciences, 1999, 878, 678-682.	3.8	40
66	Inhibition of aromatase activity and growth suppression by 4-methoxy-4-androstene-3,17-dione in an androgen sensitive human prostatic carcinoma cell line. Cancer Letters, 1996, 101, 143-148.	7.2	9
67	Modulation of aromatase activity by growth factors in an androgen sensitive human prostate cancer cell line, LNCaP. Cancer Letters, 1996, 102, 167-172.	7.2	5