Arnab Pain ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/3235966/publications.pdf Version: 2024-02-01 205 papers 23,984 citations 63 h-index 146 g-index 259 all docs 259 docs citations 259 times ranked 26570 citing authors | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 2002, 419, 498-511. | 13.7 | 3,881 | | 2 | A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470. | 13.7 | 1,838 | | 3 | Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus.
Nature, 2005, 438, 1151-1156. | 13.7 | 1,272 | | 4 | Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438, 1105-1115. | 13.7 | 1,250 | | 5 | The genome of the social amoeba Dictyostelium discoideum. Nature, 2005, 435, 43-57. | 13.7 | 1,179 | | 6 | A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses. Science, 2005, 307, 82-86. | 6.0 | 743 | | 7 | Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature, 2002, 419, 537-542. | 13.7 | 596 | | 8 | Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature, 1999, 400, 73-77. | 13.7 | 553 | | 9 | A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nature Communications, 2014, 5, 4812. | 5.8 | 531 | | 10 | New insights into the bloodâ€stage transcriptome of <i>Plasmodium falciparum</i> using RNAâ€Seq. Molecular Microbiology, 2010, 76, 12-24. | 1.2 | 374 | | 11 | The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature, 2008, 455, 799-803. | 13.7 | 338 | | 12 | Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Medicine, 2015, 7, 51. | 3.6 | 323 | | 13 | Two Nonrecombining Sympatric Forms of the Human Malaria Parasite <i>Plasmodium ovale </i> Occur Globally. Journal of Infectious Diseases, 2010, 201, 1544-1550. | 1.9 | 310 | | 14 | Genome Sequence of Theileria parva, a Bovine Pathogen That Transforms Lymphocytes. Science, 2005, 309, 134-137. | 6.0 | 309 | | 15 | Genome of the Host-Cell Transforming Parasite Theileria annulata Compared with T. parva. Science, 2005, 309, 131-133. | 6.0 | 285 | | 16 | Genomic-scale prioritization of drug targets: the TDR Targets database. Nature Reviews Drug Discovery, 2008, 7, 900-907. | 21.5 | 282 | | 17 | Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1805-1810. | 3.3 | 275 | | 18 | Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nature Genetics, 2018, 50, 307-316. | 9.4 | 271 | | # | Article | IF | Citations | |----|---|------|-----------| | 19 | The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission. Cell Host and Microbe, 2010, 8, 377-387. | 5.1 | 267 | | 20 | A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biology, 2014, 12, 86. | 1.7 | 251 | | 21 | Adaptation of the genetically tractable malaria pathogen <i>Plasmodium knowlesi</i> to continuous culture in human erythrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 531-536. | 3.3 | 239 | | 22 | Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nature Biomedical Engineering, 2021, 5, 666-677. | 11.6 | 235 | | 23 | iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus
Research, 2020, 288, 198129. | 1.1 | 226 | | 24 | Emergence of Indigenous Artemisinin-Resistant <i>Plasmodium falciparum</i> in Africa. New England Journal of Medicine, 2017, 376, 991-993. | 13.9 | 219 | | 25 | The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biology, 2014, 15, R43. | 13.9 | 212 | | 26 | Comparative Genomics of the Apicomplexan Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and Transmission Strategy. PLoS Pathogens, 2012, 8, e1002567. | 2.1 | 206 | | 27 | A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions. Cell Host and Microbe, 2020, 28, 752-766.e9. | 5.1 | 201 | | 28 | Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. ELife, 2015, 4, e06974. | 2.8 | 198 | | 29 | Comparative genomics of the fungal pathogens <i>Candida dubliniensis</i> and <i>Candida albicans</i> . Genome Research, 2009, 19, 2231-2244. | 2.4 | 195 | | 30 | Genome variation and evolution of the malaria parasite Plasmodium falciparum. Nature Genetics, 2007, 39, 120-125. | 9.4 | 184 | | 31 | The Lipopolysaccharide and \hat{l}^2 -1,3-Glucan Binding Protein Gene Is Upregulated in White Spot Virus-Infected Shrimp (Penaeus stylirostris). Journal of Virology, 2002, 76, 7140-7149. | 1.5 | 178 | | 32 | Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Research, 2014, 24, 1676-1685. | 2.4 | 176 | | 33 | Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13. Nature, 2002, 419, 527-531. | 13.7 | 156 | | 34 | Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria. PLoS Genetics, 2015, 11, e1005190. | 1.5 | 154 | | 35 | <i>Plasmodium falciparum var</i> gene expression is modified by host immunity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21801-21806. | 3.3 | 130 | | 36 | A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nature Communications, 2014, 5, 4052. | 5.8 | 130 | | # | Article | IF | Citations | |----|---|-----|-----------| | 37 | Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nature Communications, 2014, 5, 4754. | 5.8 | 124 | | 38 | Genome-wide Functional Analysis of Plasmodium Protein Phosphatases Reveals Key Regulators of Parasite Development and Differentiation. Cell Host and Microbe, 2014, 16, 128-140. | 5.1 | 122 | | 39 | Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nature Microbiology, 2018, 3, 181-188. | 5.9 | 112 | | 40 | Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort study. Lancet Respiratory Medicine, the, 2017, 5, 269-281. | 5.2 | 106 | | 41 | Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Medicine, 2016, 14, 31. | 2.3 | 102 | | 42 | Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics, 2016, 17, 69. | 1.2 | 102 | | 43 | A non-sense mutation in Cd36 gene is associated with protection from severe malaria. Lancet, The, 2001, 357, 1502-1503. | 6.3 | 101 | | 44 | Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 2020, 17, 481-494. | 9.0 | 97 | | 45 | Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West
Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biology,
2017, 15, 16. | 1.7 | 96 | | 46 | A scalable pipeline for highly effective genetic modification of a malaria parasite. Nature Methods, 2011, 8, 1078-1082. | 9.0 | 93 | | 47 | Alteration of host cell phenotype by Theileria annulata and Theileria parva: mining for manipulators in the parasite genomes. International Journal for Parasitology, 2006, 36, 9-21. | 1.3 | 91 | | 48 | The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction. Nucleic Acids Research, 2014, 42, 7113-7131. | 6.5 | 90 | | 49 | Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5767-5772. | 3.3 | 88 | | 50 | A promoter polymorphism in the gene encoding interleukin-12 p40 (IL12B) is associated with mortality from cerebral malaria and with reduced nitric oxide production. Genes and Immunity, 2002, 3, 414-418. | 2,2 | 87 | | 51 | SARS-CoV-2 S1 and N-based serological assays reveal rapid seroconversion and induction of specific antibody response in COVID-19 patients. Scientific Reports, 2020, 10, 16561. | 1.6 | 84 | | 52 | Transition of Plasmodium Sporozoites into Liver Stage-Like Forms Is Regulated by the RNA Binding Protein Pumilio. PLoS Pathogens, 2011, 7, e1002046. | 2.1 | 82 | | 53 | Genome-wide discovery and verification of novel structured RNAs in <i>Plasmodium falciparum</i> Genome Research, 2008, 18, 281-292. | 2.4 | 81 | | 54 | Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biology, 2014, 15, 493. | 3.8 | 80 | | # | Article | IF | CITATIONS | |----|--|-----|------------| | 55 | Host-directed editing of the SARS-CoV-2 genome. Biochemical and Biophysical Research Communications, 2021, 538, 35-39. | 1.0 | 80 | | 56 | Functional Characterization of the Plasmodium falciparum and P. berghei Homologues of Macrophage Migration Inhibitory Factor. Infection and Immunity, 2007, 75, 1116-1128. | 1.0 | 79 | | 57 | PolyTB: A genomic variation map for Mycobacterium tuberculosis. Tuberculosis, 2014, 94, 346-354. | 0.8 | 79 | | 58 | Divergent Mitochondrial Respiratory Chains in Phototrophic Relatives of Apicomplexan Parasites. Molecular Biology and Evolution, 2015, 32, 1115-1131. | 3.5 | 79 | | 59 | Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations. Scientific Reports, 2015, 5, 15443. | 1.6 | 78 | | 60 | Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion. MBio, 2014, 5, e01744-14. | 1.8 | 76 | | 61 | Population genomic structure and adaptation in the zoonotic malaria parasite <i>Plasmodium knowlesi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13027-13032. | 3.3 | 7 5 | | 62 | Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites. BMC Genomics, 2010, 11, 499. | 1.2 | 74 | | 63 | Genome-Wide Transposon Mutagenesis Indicates that Mycobacterium marinum Customizes Its
Virulence Mechanisms for Survival and Replication in Different Hosts. Infection and Immunity, 2015,
83, 1778-1788. | 1.0 | 72 | | 64 | The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood, 2001, 98, 3733-3738. | 0.6 | 70 | | 65 | Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes. PLoS Pathogens, 2015, 11, e1005273. | 2.1 | 70 | | 66 | Proteomes and transcriptomes of the Apicomplexa – Where's the message?. International Journal for Parasitology, 2009, 39, 135-143. | 1.3 | 68 | | 67 | Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite <i>Plasmodium knowlesi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7231-7236. | 3.3 | 67 | | 68 | Differential <i>var</i> gene expression in the organs of patients dying of falciparum malaria.
Molecular Microbiology, 2007, 65, 959-967. | 1.2 | 64 | | 69 | Re-evaluating the Green versus Red Signal in Eukaryotes with Secondary Plastid of Red Algal Origin.
Genome Biology and Evolution, 2012, 4, 626-635. | 1.1 | 64 | | 70 | Comparative Genome Analysis of Three Eukaryotic Parasites with Differing Abilities To Transform Leukocytes Reveals Key Mediators of <i>Theileria</i> -Induced Leukocyte Transformation. MBio, 2012, 3, e00204-12. | 1.8 | 64 | | 71 | Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics, 2016, 17, 151. | 1.2 | 62 | | 72 | Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei. Scientific Reports, 2015, 5, 12525. | 1.6 | 60 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 73 | Split Photosystem Protein, Linear-Mapping Topology, and Growth of Structural Complexity in the Plastid Genome of Chromera velia. Molecular Biology and Evolution, 2013, 30, 2447-2462. | 3.5 | 59 | | 74 | Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species. International Journal for Parasitology, 2016, 46, 685-696. | 1.3 | 59 | | 75 | Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan. PLoS ONE, 2015, 10, e0117771. | 1.1 | 59 | | 76 | Autoagglutination of malaria-infected red blood cells and malaria severity. Lancet, The, 2000, 355, 1427-1428. | 6.3 | 57 | | 77 | Diversity of extracellular proteins during the transition from the â€~proto-apicomplexan' alveolates to the apicomplexan obligate parasites. Parasitology, 2016, 143, 1-17. | 0.7 | 56 | | 78 | Insight into the genome of Aspergillus fumigatus: analysis of a 922kb region encompassing the nitrate assimilation gene cluster. Fungal Genetics and Biology, 2004, 41, 443-453. | 0.9 | 55 | | 79 | Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting. BMC Genomics, 2014, 15, 991. | 1.2 | 52 | | 80 | Whole genome sequence analysis of Mycobacterium suricattae. Tuberculosis, 2015, 95, 682-688. | 0.8 | 52 | | 81 | Recruitment of EB1, a Master Regulator of Microtubule Dynamics, to the Surface of the Theileria annulata Schizont. PLoS Pathogens, 2013, 9, e1003346. | 2.1 | 51 | | 82 | READSCAN: a fast and scalable pathogen discovery program with accurate genome relative abundance estimation. Bioinformatics, 2013, 29, 391-392. | 1.8 | 51 | | 83 | Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS. Frontiers in Microbiology, 2016, 7, 1288. | 1.5 | 51 | | 84 | Recombinations in Staphylococcal Cassette Chromosome mec Elements Compromise the Molecular Detection of Methicillin Resistance in Staphylococcus aureus. PLoS ONE, 2014, 9, e101419. | 1.1 | 50 | | 85 | Timing of host feeding drives rhythms in parasite replication. PLoS Pathogens, 2018, 14, e1006900. | 2.1 | 48 | | 86 | The rhoptry proteome of Eimeria tenella sporozoites. International Journal for Parasitology, 2013, 43, 181-188. | 1.3 | 46 | | 87 | Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biology, 2018, 16, e2006128. | 2.6 | 45 | | 88 | Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows
Mapping of Genes Affecting Disease Transmission. PLoS Neglected Tropical Diseases, 2014, 8, e2652. | 1.3 | 44 | | 89 | Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission. PLoS Pathogens, 2019, 15, e1008048. | 2.1 | 43 | | 90 | A genetic barcode of SARS-CoV-2 for monitoring global distribution of different clades during the COVID-19 pandemic. International Journal of Infectious Diseases, 2020, 100, 216-223. | 1.5 | 43 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 91 | Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes and Infection, 2008, 10, 462-470. | 1.0 | 42 | | 92 | Early Humoral Response Correlates with Disease Severity and Outcomes in COVID-19 Patients. Viruses, 2020, 12, 1390. | 1.5 | 42 | | 93 | Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Scientific Reports, 2017, 7, 14407. | 1.6 | 41 | | 94 | Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms. Nature Communications, 2020, 11, 2763. | 5.8 | 41 | | 95 | Expression Analysis of the Theileria parva Subtelomere-Encoded Variable Secreted Protein Gene Family. PLoS ONE, 2009, 4, e4839. | 1.1 | 41 | | 96 | A divergent cyclin/cyclin-dependent kinase complex controls the atypical replication of a malaria parasite during gametogony and transmission. ELife, 2020, 9, . | 2.8 | 41 | | 97 | Functional Pangenome Analysis Shows Key Features of E Protein Are Preserved in SARS and SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 2020, 10, 405. | 1.8 | 40 | | 98 | SARS-CoV-2 genomes from Saudi Arabia implicate nucleocapsid mutations in host response and increased viral load. Nature Communications, 2022, 13, 601. | 5.8 | 40 | | 99 | Spontaneous duplication of a 661â€fbp element within a two-component sensor regulator gene causes phenotypic switching in colonies ofPseudomonas tolaasii, cause of brown blotch disease of mushrooms. Molecular Microbiology, 1997, 25, 211-218. | 1.2 | 38 | | 100 | Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics, 2015, 16, 532. | 1.2 | 38 | | 101 | Plasmodium falciparumAntigenic Variation: Relationships between In Vivo Selection, Acquired Antibody Response, and Disease Severity. Journal of Infectious Diseases, 2005, 192, 1119-1126. | 1.9 | 37 | | 102 | Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response. PLoS Pathogens, 2015, 11, e1004765. | 2.1 | 37 | | 103 | Progenitor strain introduction of Mycobacterium bovis at the wildlife-livestock interface can lead to clonal expansion of the disease in a single ecosystem. Infection, Genetics and Evolution, 2017, 51, 235-238. | 1.0 | 35 | | 104 | Enteric Infections Circulating during Hajj Seasons, 2011–2013. Emerging Infectious Diseases, 2017, 23, . | 2.0 | 33 | | 105 | A selenocysteine tRNA and SECIS element in Plasmodium falciparum. Rna, 2005, 11, 119-122. | 1.6 | 32 | | 106 | Analysis of the Role of recA in Phenotypic Switching of Pseudomonas tolaasii. Journal of Bacteriology, 2000, 182, 6532-6535. | 1.0 | 30 | | 107 | Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (<i>Rhynchophorus ferrugineus</i>). Molecular Ecology, 2021, 30, 2025-2039. | 2.0 | 30 | | 108 | Long- and Short-Term Selective Forces on Malaria Parasite Genomes. PLoS Genetics, 2010, 6, e1001099. | 1.5 | 30 | | # | Article | IF | Citations | |-----|--|------|-----------| | 109 | Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites.
Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 723-729. | 0.5 | 29 | | 110 | Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties. RSC Advances, 2017, 7, 34331-34338. | 1.7 | 29 | | 111 | Defining the protein interaction network of human malaria parasite Plasmodium falciparum.
Genomics, 2012, 99, 69-75. | 1.3 | 28 | | 112 | Comprehensive Evaluation of Toxoplasma gondii VEG and Neospora caninum LIV Genomes with Tachyzoite Stage Transcriptome and Proteome Defines Novel Transcript Features. PLoS ONE, 2015, 10, e0124473. | 1.1 | 28 | | 113 | Advances in the genomics of ticks and tick-borne pathogens. Trends in Parasitology, 2007, 23, 391-396. | 1.5 | 27 | | 114 | Proteogenomic Investigation of Strain Variation in Clinical <i>Mycobacterium tuberculosis</i> Isolates. Journal of Proteome Research, 2017, 16, 3841-3851. | 1.8 | 27 | | 115 | Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS). BMC Genomics, 2012, 13, 125. | 1.2 | 26 | | 116 | Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Communicative and Integrative Biology, 2016, 9, e1116653. | 0.6 | 26 | | 117 | A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance. BMC Genomics, 2017, 18, 769. | 1.2 | 26 | | 118 | Whole genome sequencing of amplified Plasmodium knowlesi DNA from unprocessed blood reveals genetic exchange events between Malaysian Peninsular and Borneo subpopulations. Scientific Reports, 2019, 9, 9873. | 1.6 | 25 | | 119 | Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genomics, 2019, 20, 440. | 1.2 | 25 | | 120 | New Initiatives for Management of Red Palm Weevil Threats to Historical Arabian Date Palms [*] . Florida Entomologist, 2011, 94, 733-736. | 0.2 | 24 | | 121 | PhyTB: Phylogenetic tree visualisation and sample positioning for M. tuberculosis. BMC Bioinformatics, 2015, 16, 155. | 1.2 | 23 | | 122 | Rapid identification of genes controlling virulence and immunity in malaria parasites. PLoS Pathogens, 2017, 13, e1006447. | 2.1 | 23 | | 123 | The Population Structure of Vibrio cholerae from the Chandigarh Region of Northern India. PLoS
Neglected Tropical Diseases, 2014, 8, e2981. | 1.3 | 21 | | 124 | The genome of the zoonotic malaria parasite Plasmodium simium reveals adaptations to host switching. BMC Biology, 2021, 19, 219. | 1.7 | 21 | | 125 | A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line. International Journal for Parasitology, 2018, 48, 191-196. | 1.3 | 20 | | 126 | Genomes beyond compare. Nature Reviews Microbiology, 2004, 2, 616-617. | 13.6 | 19 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 127 | A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data. BMC Genomics, 2013, 14, 128. | 1.2 | 19 | | 128 | The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae. International Journal of Mycobacteriology, 2015, 4, 207-216. | 0.3 | 19 | | 129 | A landscape of genomic alterations at the root of a near-untreatable tuberculosis epidemic. BMC Medicine, 2020, 18, 24. | 2.3 | 19 | | 130 | Targeted Disruption of py235ebp-1: Invasion of Erythrocytes by Plasmodium yoelii Using an Alternative Py235 Erythrocyte Binding Protein. PLoS Pathogens, 2011, 7, e1001288. | 2.1 | 18 | | 131 | Proteomic Investigation of <i>Rhizoctonia solani</i> AG 4 Identifies Secretome and Mycelial Proteins with Roles in Plant Cell Wall Degradation and Virulence. Journal of Agricultural and Food Chemistry, 2016, 64, 3101-3110. | 2.4 | 18 | | 132 | Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium. Parasitology International, 2016, 65, 463-471. | 0.6 | 18 | | 133 | Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations. PLoS Genetics, 2017, 13, e1007008. | 1.5 | 18 | | 134 | Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator. PLoS ONE, 2019, 14, e0211003. | 1.1 | 18 | | 135 | Clonal expansion across the seas as seen through CPLP-TB database: A joint effort in cataloguing Mycobacterium tuberculosis genetic diversity in Portuguese-speaking countries. Infection, Genetics and Evolution, 2019, 72, 44-58. | 1.0 | 18 | | 136 | miR-126-5p by direct targeting of JNK-interacting protein-2 (JIP-2) plays a key role in Theileria-infected macrophage virulence. PLoS Pathogens, 2018, 14, e1006942. | 2.1 | 18 | | 137 | Short sequence motif dynamics in the SARS-CoV-2 genome suggest a role for cytosine deamination in CpG reduction. Journal of Molecular Cell Biology, 2021, 13, 225-227. | 1.5 | 17 | | 138 | Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum. Scientific Reports, 2021, 11, 8334. | 1.6 | 17 | | 139 | Protein phosphatase 1 regulates atypical mitotic and meiotic division in Plasmodium sexual stages. Communications Biology, 2021, 4, 760. | 2.0 | 17 | | 140 | Proteomic profiling of the plasma of Gambian children with cerebral malaria. Malaria Journal, 2018, 17, 337. | 0.8 | 16 | | 141 | Simultaneous detection and mutation surveillance of SARS-CoV-2 and multiple respiratory viruses by rapid field-deployable sequencing. Med, 2021, 2, 689-700.e4. | 2.2 | 16 | | 142 | Accelerating Early Antituberculosis Drug Discovery by Creating Mycobacterial Indicator Strains That Predict Mode of Action. Antimicrobial Agents and Chemotherapy, 2018, 62, . | 1.4 | 15 | | 143 | Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model. Frontiers in Microbiology, 2018, 9, 1118. | 1.5 | 15 | | 144 | First report of Klebsiella quasipneumoniae harboring blaKPC-2 in Saudi Arabia. Antimicrobial Resistance and Infection Control, 2019, 8, 203. | 1,5 | 15 | | # | Article | IF | Citations | |-----|---|------|-----------| | 145 | Genomic and Phenotypic Analyses Reveal the Emergence of an Atypical Salmonella enterica Serovar Senftenberg Variant in China. Journal of Clinical Microbiology, 2016, 54, 2014-2022. | 1.8 | 14 | | 146 | Understanding the antifouling mechanisms related to copper oxide and zinc oxide nanoparticles in anaerobic membrane bioreactors. Environmental Science: Nano, 2019, 6, 3467-3479. | 2.2 | 14 | | 147 | Emergence of multidrug-resistant <i>Mycobacterium tuberculosis</i> of the Beijing lineage in Portugal and Guinea-Bissau: a snapshot of moving clones by whole-genome sequencing. Emerging Microbes and Infections, 2020, 9, 1342-1353. | 3.0 | 14 | | 148 | Pangenome Analysis of the Soilborne Fungal Phytopathogen Rhizoctonia solani and Development of a Comprehensive Web Resource: RsolaniDB. Frontiers in Microbiology, 2022, 13, 839524. | 1.5 | 14 | | 149 | Multidrug-Resistant Mycobacterium tuberculosis of the Latin American Mediterranean Lineage,
Wrongly Identified as Mycobacterium pinnipedii (Spoligotype International Type 863 [SIT863]), Causing
Active Tuberculosis in South Brazil. Journal of Clinical Microbiology, 2015, 53, 3805-3811. | 1.8 | 13 | | 150 | Whole genome sequencing provides additional insights into recurrent tuberculosis classified as endogenous reactivation by IS6110 DNA fingerprinting. Infection, Genetics and Evolution, 2019, 75, 103948. | 1.0 | 13 | | 151 | Discovering, Characterizing, and Applying Acyl Homoserine Lactone-Quenching Enzymes to Mitigate Microbe-Associated Problems Under Saline Conditions. Frontiers in Microbiology, 2019, 10, 823. | 1.5 | 13 | | 152 | Plasmodium genomics: latest milestone. Nature Reviews Microbiology, 2009, 7, 180-181. | 13.6 | 12 | | 153 | Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174. Journal of Bacteriology, 2012, 194, 3284-3285. | 1.0 | 10 | | 154 | Theileria parasites subvert E2F signaling to stimulate leukocyte proliferation. Scientific Reports, 2020, 10, 3982. | 1.6 | 10 | | 155 | Comparative Genomic and Transcriptomic Analyses of Mycobacterium kansasii Subtypes Provide New Insights Into Their Pathogenicity and Taxonomy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 122. | 1.8 | 10 | | 156 | A Robust, Safe, and Scalable Magnetic Nanoparticle Workflow for RNA Extraction of Pathogens from Clinical and Wastewater Samples. Global Challenges, 2021, 5, 2000068. | 1.8 | 10 | | 157 | Plasmodium vinckei genomes provide insights into the pan-genome and evolution of rodent malaria parasites. BMC Biology, 2021, 19, 69. | 1.7 | 10 | | 158 | SnoopCGH: software for visualizing comparative genomic hybridization data. Bioinformatics, 2009, 25, 2732-2733. | 1.8 | 9 | | 159 | Novel tumour suppressor roles
for <scp><i>GZMA</i></scp> and <scp><i>RASGRP1</i></scp> in <i>Theileria annulata</i> étransformed
macrophages and human B lymphoma cells. Cellular Microbiology, 2020, 22, e13255. | 1.1 | 9 | | 160 | Meningococcal carriage among Hajj pilgrims, risk factors for carriage and records of vaccination: a study of pilgrims to Mecca. Tropical Medicine and International Health, 2021, 26, 453-461. | 1.0 | 9 | | 161 | Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor.
Infection, Genetics and Evolution, 2016, 45, 461-473. | 1.0 | 8 | | 162 | A fast and cost-effective microsampling protocol incorporating reduced animal usage for time-series transcriptomics in rodent malaria parasites. Malaria Journal, 2019, 18, 26. | 0.8 | 8 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 163 | Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954. Journal of Bacteriology, 2012, 194, 6339-6340. | 1.0 | 7 | | 164 | Complete Genome Sequence of Mycobacterium fortuitum subsp. fortuitum Type Strain DSM46621. Journal of Bacteriology, 2012, 194, 6337-6338. | 1.0 | 7 | | 165 | <i>Theileria</i> highjacks JNK2 into a complex with the macroschizont GPI (GlycosylPhosphatidylInositol)-anchored surface protein p104. Cellular Microbiology, 2019, 21, e12973. | 1.1 | 7 | | 166 | Dynamics and within-host interaction of Theileria lestoquardi and T. ovis among naive sheep in Oman. Scientific Reports, 2020, 10, 19802. | 1.6 | 7 | | 167 | Performance of Commercially Available Rapid Serological Assays for the Detection of SARS-CoV-2 Antibodies. Pathogens, 2020, 9, 1067. | 1.2 | 7 | | 168 | Genomic adaptation: a fungal perspective. Nature Reviews Microbiology, 2008, 6, 572-573. | 13.6 | 6 | | 169 | Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly- \hat{l}^3 - d -Glutamic Acid Anthrax Capsule. Genome Announcements, 2013, 1, . | 0.8 | 6 | | 170 | Genetics and malaria – more questions than answers. Trends in Parasitology, 2001, 17, 55-56. | 1.5 | 5 | | 171 | Comparative Apicomplexan genomics. Nature Reviews Microbiology, 2005, 3, 454-455. | 13.6 | 5 | | 172 | Specialist fungi, versatile genomes. Nature Reviews Microbiology, 2007, 5, 332-333. | 13.6 | 5 | | 173 | A proportion of mutations fixed in the genomes of in vitro selected isogenic drug-resistant Mycobacterium tuberculosis mutants can be detected as minority variants in the parent culture. FEMS Microbiology Letters, 2015, 362, 1-7. | 0.7 | 5 | | 174 | Influx of diverse, drug resistant and transmissible Plasmodium falciparum into a malaria-free setting in Qatar. BMC Infectious Diseases, 2020, 20, 413. | 1.3 | 5 | | 175 | Quick and Easy Assembly of a One-Step qRT-PCR Kit for COVID-19 Diagnostics Using In-House Enzymes. ACS Omega, 2021, 6, 7374-7386. | 1.6 | 5 | | 176 | Proteomic profiling of the brain of mice with experimental cerebral malaria. Journal of Proteomics, 2018, 180, 61-69. | 1.2 | 5 | | 177 | Global mapping of protein subcellular location in apicomplexans: the parasite as we've never seen it before. Access Microbiology, 2019, 1, . | 0.2 | 5 | | 178 | Variants in Bedaquiline-Candidate-Resistance Genes: Prevalence in Bedaquiline-Naive Patients, Effect on MIC, and Association with Mycobacterium tuberculosis Lineage. Antimicrobial Agents and Chemotherapy, 2022, 66, . | 1.4 | 5 | | 179 | A feast of protozoan genomes. Nature Reviews Microbiology, 2005, 3, 670-671. | 13.6 | 4 | | 180 | Unity in diversity: lessons from Candida. Nature Reviews Microbiology, 2009, 7, 763-763. | 13.6 | 4 | | # | Article | IF | Citations | |-----|--|------|-----------| | 181 | Genome Sequences of the Oxytetracycline Production Strain Streptomyces rimosus R6-500 and Two Mutants with Chromosomal Rearrangements. Genome Announcements, $2014, 2, \ldots$ | 0.8 | 4 | | 182 | Development of the Myzozoan Aquatic Parasite Perkinsus marinus as A Versatile Experimental Genetic Model Organism. Protist, 2021, 172, 125830. | 0.6 | 4 | | 183 | Hot and sexy moulds!. Nature Reviews Microbiology, 2006, 4, 244-245. | 13.6 | 3 | | 184 | Complete Genome Sequence of Mycobacterium xenopi Type Strain RIVM700367. Journal of Bacteriology, 2012, 194, 3282-3283. | 1.0 | 3 | | 185 | SVAMP: sequence variation analysis, maps and phylogeny. Bioinformatics, 2014, 30, 2227-2229. | 1.8 | 3 | | 186 | Identification of gene fusion events in Mycobacterium tuberculosis that encode chimeric proteins. NAR Genomics and Bioinformatics, 2020, 2, Iqaa033. | 1.5 | 3 | | 187 | Metagenomics of Imported Multidrug-Resistant Mycobacterium leprae, Saudi Arabia, 2017. Emerging Infectious Diseases, 2020, 26, 615-617. | 2.0 | 3 | | 188 | Insights into the ancestry evolution of the <i>Mycobacterium tuberculosis </i> complex from analysis of <i>Mycobacterium riyadhense </i> . NAR Genomics and Bioinformatics, 2021, 3, Iqab 070. | 1.5 | 3 | | 189 | Whole-genome sequencing as a tool for studying the microevolution of drug-resistant serial Mycobacterium tuberculosis isolates. Tuberculosis, 2021, 131, 102137. | 0.8 | 3 | | 190 | Metagenomics-driven rapid diagnosis of an imported fatal case of rare amoebic meningoencephalitis. Journal of Travel Medicine, 2022, 29, . | 1.4 | 3 | | 191 | Genome Sequence of a Multidrug-Resistant Strain of Stenotrophomonas maltophilia with Carbapenem Resistance, Isolated from King Abdullah Medical City, Makkah, Saudi Arabia. Genome Announcements, 2015, 3, . | 0.8 | 2 | | 192 | MRE11 Is Crucial for Malaria Parasite Transmission and Its Absence Affects Expression of Interconnected Networks of Key Genes Essential for Life. Cells, 2020, 9, 2590. | 1.8 | 2 | | 193 | Global research alliance in infectious disease: a collaborative effort to combat infectious diseases through dissemination of portable sequencing. BMC Research Notes, 2022, 15, 44. | 0.6 | 2 | | 194 | Eukaryotes: not beyond compare. Nature Reviews Microbiology, 2004, 2, 856-857. | 13.6 | 1 | | 195 | Strength in diversity. Nature Reviews Microbiology, 2004, 2, 358-359. | 13.6 | 1 | | 196 | Sequence data swell for nematodes. Nature Reviews Microbiology, 2008, 6, 800-801. | 13.6 | 1 | | 197 | Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan. International Journal of Mycobacteriology, 2015, 4, 11-12. | 0.3 | 1 | | 198 | The Genetics of Resistance to Malaria. , 2004, , 479-500. | | 1 | ## ARNAB PAIN | # | ARTICLE | IF | CITATIONS | |-----|---|------|-----------| | 199 | Fungi behaving badly. Nature Reviews Microbiology, 2005, 3, 832-833. | 13.6 | 0 | | 200 | Variety is the spice of eukaryotic life. Nature Reviews Microbiology, 2007, 5, 660-661. | 13.6 | 0 | | 201 | Plant killers on the spot. Nature Reviews Microbiology, 2010, 8, 615-615. | 13.6 | 0 | | 202 | Construction of a large-scale Burkholderia cenocepacia J2315 transposon mutant library. , 2014, , . | | 0 | | 203 | Genomic diversity of drug-resistant Mycobacterium tuberculosis isolates in Lisbon Portugal: Towards tuberculosis genomic epidemiology. International Journal of Mycobacteriology, 2015, 4, 27-28. | 0.3 | 0 | | 204 | Crohn's Disease Patient Infected With Multiple Co-occurring Nontuberculous Mycobacteria.
Inflammatory Bowel Diseases, 2020, 26, e65-e67. | 0.9 | 0 | | 205 | Cover Image: Novel tumour suppressor roles for GZMA and RASGRP1 in Theileria annulataâ€transformed macrophages and human B lymphoma cells (Cellular Microbiology 12/2020). Cellular Microbiology, 2020, 22, e13285. | 1.1 | 0 |