
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/323539/publications.pdf Version: 2024-02-01

IÃ1/ PCEN HOMELER

#	Article	IF	CITATIONS
1	Elevational trends of tree fine root traits in speciesâ€rich tropical Andean forests. Oikos, 2023, 2023, .	2.7	8
2	Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate. Biotropica, 2022, 54, 309-326.	1.6	6
3	Influence of Increasing Nutrient Availability on Fern and Lycophyte Diversity. American Fern Journal, 2022, 112, .	0.3	1
4	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
5	Changes in tree functional composition across topographic gradients and through time in a tropical montane forest. PLoS ONE, 2022, 17, e0263508.	2.5	11
6	Topography as a factor driving smallâ€scale variation in tree fine root traits and root functional diversity in a speciesâ€rich tropical montane forest. New Phytologist, 2021, 230, 129-138.	7.3	28
7	Factors controlling the productivity of tropical Andean forests: climate and soil are more important than tree diversity. Biogeosciences, 2021, 18, 1525-1541.	3.3	18
8	Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 2021, 12, 2138.	12.8	26
9	Classification of Tree Functional Types in a Megadiverse Tropical Mountain Forest from Leaf Optical Metrics and Functional Traits for Two Related Ecosystem Functions. Forests, 2021, 12, 649.	2.1	2
10	Leaf trait variation in species-rich tropical Andean forests. Scientific Reports, 2021, 11, 9993.	3.3	20
11	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
12	Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytologist, 2021, 232, 551-566.	7.3	20
13	Response of water-bound fluxes of potassium, calcium, magnesium and sodium to nutrient additions in an Ecuadorian tropical montane forest. Forest Ecology and Management, 2021, 501, 119661.	3.2	4
14	A research framework for projecting ecosystem change in highly diverse tropical mountain ecosystems. Oecologia, 2021, 195, 589-600.	2.0	12
15	Biodiversity and ecosystem functions depend on environmental conditions and resources rather than the geodiversity of a tropical biodiversity hotspot. Scientific Reports, 2021, 11, 24530.	3.3	12
16	Moderate phosphorus additions consistently affect community composition of arbuscular mycorrhizal fungi in tropical montane forests in southern Ecuador. New Phytologist, 2020, 227, 1505-1518.	7.3	27
17	Accounting for multiple ecosystem services in a simulation of landâ€use decisions: Does it reduce tropical deforestation?. Global Change Biology, 2020, 26, 2403-2420.	9.5	37
18	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122

#	Article	IF	CITATIONS
19	Elevation and latitude drives structure and tree species composition in Andean forests: Results from a large-scale plot network. PLoS ONE, 2020, 15, e0231553.	2.5	54
20	A plot-based elevational assessment of species densities, life forms and leaf traits of seed plants in the south-eastern Himalayan biodiversity hotspot, North Myanmar. Plant Ecology and Diversity, 2020, 13, 437-450.	2.4	0
21	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185
22	Modeling tropical montane forest biomass, productivity and canopy traits with multispectral remote sensing data. Remote Sensing of Environment, 2019, 225, 77-92.	11.0	39
23	Klimawandel und Vegetation - Eine globale $ ilde{A}$ æbersicht. , 2019, , .		4
24	Direct and indirect effects of plant and frugivore diversity on structural and functional components of fruit removal by birds. Oecologia, 2019, 189, 435-445.	2.0	15
25	Functional responses of avian frugivores to variation in fruit resources between natural and fragmented forests. Functional Ecology, 2019, 33, 399-410.	3.6	14
26	Savannen und TrockenwÄlder. , 2019, , 287-308.		0
27	Tundren und polare Wüsten. , 2019, , 43-116.		0
28	Wüsten und Halbwüsten. , 2019, , 309-321.		0
29	Globaler Klimawandel: die Grundlagen. , 2019, , 1-36.		Ο
30	Boreale WÃkder und Moorgebiete. , 2019, , 117-181.		0
31	Tropische WÄkler und Gebirge. , 2019, , 323-358.		Ο
32	Physiologische Anpassung und Migration als Antworten auf den Klimawandel. , 2019, , 37-41.		0
33	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	7.1	144
34	Functional traits determine tree growth and ecosystem productivity of a tropical montane forest: Insights from a longâ€ŧerm nutrient manipulation experiment. Global Change Biology, 2018, 24, 399-409.	9.5	51
35	Contrasting species responses to continued nitrogen and phosphorus addition in tropical montane forest tree seedlings. Biotropica, 2018, 50, 234-245.	1.6	27
36	Hydrogenotrophic methanogenesis is the dominant methanogenic pathway in neotropical tank bromeliad wetlands. Environmental Microbiology Reports, 2018, 10, 33-39.	2.4	4

#	Article	IF	CITATIONS
37	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
38	Widespread but heterogeneous responses of Andean forests to climate change. Nature, 2018, 564, 207-212.	27.8	184
39	Elevationâ€dependent effects of forest fragmentation on plant–bird interaction networks in the tropical Andes. Ecography, 2018, 41, 1497-1506.	4.5	25
40	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78
41	Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data. Remote Sensing, 2018, 10, 660.	4.0	26
42	Remote sensing improves prediction of tropical montane species diversity but performance differs among taxa. Ecological Indicators, 2017, 83, 538-549.	6.3	31
43	Nutrient enrichment effects on mycorrhizal fungi in an Andean tropical montane Forest. Mycorrhiza, 2017, 27, 311-319.	2.8	16
44	Research Priorities for the Conservation and Sustainable Governance of Andean Forest Landscapes. Mountain Research and Development, 2017, 37, 323.	1.0	41
45	The carbon fluxes in different successional stages: modelling the dynamics of tropical montane forests in South Ecuador. Forest Ecosystems, 2017, 4, .	3.1	23
46	Spatio-temporal analysis of the human footprint in South Ecuador: Influence of human pressure on ecosystems and effectiveness of protected areas. Applied Geography, 2017, 78, 22-32.	3.7	51
47	Editorial: Tropical Forest Ecosystem Responses to Increasing Nutrient Availability. Frontiers in Earth Science, 2017, 5, .	1.8	8
48	Stand dynamics of the drought-affected floodplain forests of Araguaia River, Brazilian Amazon. Forest Ecosystems, 2017, 4, .	3.1	8
49	Increases in Soil Aggregation Following Phosphorus Additions in a Tropical Premontane Forest are Not Driven by Root and Arbuscular Mycorrhizal Fungal Abundances. Frontiers in Earth Science, 2016, 3, .	1.8	9
50	Nutrient-Induced Modifications of Wood Anatomical Traits of Alchornea lojaensis (Euphorbiaceae). Frontiers in Earth Science, 2016, 4, .	1.8	15
51	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	3.3	108
52	Elevation and topography influence community structure, biomass and host tree interactions of lianas in tropical montane forests of southern Ecuador. Journal of Vegetation Science, 2016, 27, 958-968.	2.2	21
53	Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biology and Biochemistry, 2016, 94, 37-47.	8.8	61
54	Ammonium, nitrate and glycine uptake of six Ecuadorian tropical montane forest tree species: an <i>in situ</i> pot experiment with saplings. Journal of Tropical Ecology, 2015, 31, 139-152.	1.1	8

#	Article	IF	CITATIONS
55	Performance of Seedlings of a Shade-Tolerant Tropical Tree Species after Moderate Addition of N and P. Frontiers in Earth Science, 2015, 3, .	1.8	10
56	Deforestation and Forest Fragmentation in South Ecuador since the 1970s – Losing a Hotspot of Biodiversity. PLoS ONE, 2015, 10, e0133701.	2.5	142
57	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	7.1	335
58	Effects of flooding on trees in the semi-deciduous transition forests of the Araguaia floodplain, Brazil. Acta Oecologica, 2015, 69, 21-30.	1.1	20
59	Mapping tree density at a global scale. Nature, 2015, 525, 201-205.	27.8	642
60	ls tropical montane forest heterogeneity promoted by a resourceâ€driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Functional Ecology, 2015, 29, 430-440.	3.6	86
61	Diversity patterns of ferns along elevational gradients in Andean tropical forests. Plant Ecology and Diversity, 2015, 8, 13-24.	2.4	65
62	Large-Scale Patterns of Turnover and Basal Area Change in Andean Forests. PLoS ONE, 2015, 10, e0126594.	2.5	38
63	Phylogenetic niche conservatism does not explain elevational patterns of species richness, phylodiversity and family age of tree assemblages in Andean rainforest. Erdkunde, 2015, 70, 83-106.	0.8	6
64	Species richness–productivity relationships of tropical terrestrial ferns at regional and local scales. Journal of Ecology, 2014, 102, 1623-1633.	4.0	33
65	Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology, 2014, 20, 3646-3659.	9.5	194
66	Representativeness of tree diversity in the modern pollen rain of <scp>A</scp> ndean montane forests. Journal of Vegetation Science, 2014, 25, 481-490.	2.2	32
67	Impact of mycorrhization on the abundance, growth and leaf nutrient status of ferns along a tropical elevational gradient. Oecologia, 2014, 175, 887-900.	2.0	18
68	Trapping pollen in the tropics — Comparing modern pollen rain spectra of different pollen traps and surface samples across Andean vegetation zones. Review of Palaeobotany and Palynology, 2013, 193, 57-69.	1.5	42
69	Mycorrhiza Networks Promote Biodiversity and Stabilize the Tropical Mountain Rain Forest Ecosystem: Perspectives for Understanding Complex Communities. Ecological Studies, 2013, , 187-203.	1.2	16
70	Short-term response of the Ca cycle of a montane forest in Ecuador to low experimental CaCl2 additions. Journal of Plant Nutrition and Soil Science, 2013, 176, 892-903.	1.9	11
71	The Carbon Balance of Tropical Mountain Forests Along an Altitudinal Transect. Ecological Studies, 2013, , 117-139.	1.2	28
72	Nutrient Additions Affecting Matter Turnover in Forest and Pasture Ecosystems. Ecological Studies, 2013, , 297-313.	1.2	3

#	Article	IF	CITATIONS
73	Effects of Nutrient Addition on the Productivity of Montane Forests and Implications for the Carbon Cycle. Ecological Studies, 2013, , 315-329.	1.2	18
74	Plant Diversity and Its Relevance for the Provision of Ecosystem Services. Ecological Studies, 2013, , 93-106.	1.2	8
75	Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia, 2012, 170, 263-274.	2.0	70
76	Epiphytic biomass of a tropical montane forest varies with topography. Journal of Tropical Ecology, 2012, 28, 23-31.	1.1	48
77	Altitudinal Change in the Photosynthetic Capacity of Tropical Trees: A Case Study from Ecuador and a Pantropical Literature Analysis. Ecosystems, 2012, 15, 958-973.	3.4	22
78	Bryophyte cover on trees as proxy for air humidity in the tropics. Ecological Indicators, 2012, 20, 277-281.	6.3	66
79	Tropical Andean Forests Are Highly Susceptible to Nutrient Inputs—Rapid Effects of Experimental N and P Addition to an Ecuadorian Montane Forest. PLoS ONE, 2012, 7, e47128.	2.5	111
80	Ecuador Forest Plots Database. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 446-446.	0.3	0
81	Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	98
82	Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation, 2011, 144, 548-557.	4.1	185
83	Three new species of South American <1>Moraceae 1 . Blumea: Journal of Plant Taxonomy and Plant Geography, 2010, 55, 196-200.	0.2	1
84	Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests (NE Ecuador). Plant and Soil, 2010, 336, 443-458.	3.7	53
85	Tree Diversity, Forest Structure and Productivity along Altitudinal and Topographical Gradients in a Speciesâ€Rich Ecuadorian Montane Rain Forest. Biotropica, 2010, 42, 140-148.	1.6	265
86	Caterpillars and Host Plant Records for 59 Species of Geometridae (Lepidoptera) from a Montane Rainforest in Southern Ecuador. Journal of Insect Science, 2010, 10, 1-22.	1.5	43
87	Factors controlling the abundance of lianas along an altitudinal transect of tropical forests in Ecuador. Forest Ecology and Management, 2010, 259, 1399-1405.	3.2	37
88	Response of the N and P cycles of an old-growth montane forest in Ecuador to experimental low-level N and P amendments. Forest Ecology and Management, 2010, 260, 1434-1445.	3.2	46
89	Landâ€cover classification in the Andes of southern Ecuador using Landsat ETM+ data as a basis for SVAT modelling. International Journal of Remote Sensing, 2009, 30, 1867-1886.	2.9	55
90	Thermal structure of a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization. Erdkunde, 2009, 63, 321-335.	0.8	55

#	Article	IF	CITATIONS
91	Simulating forest dynamics of a tropical montane forest in South Ecuador. Erdkunde, 2009, 63, 347-364.	0.8	32
92	Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. Journal of Plant Nutrition and Soil Science, 2008, 171, 220-230.	1.9	75
93	Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest. International Journal of Biometeorology, 2006, 50, 370-384.	3.0	93
94	Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. New Phytologist, 2005, 165, 923-936.	7.3	89
95	Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock, and turnover. Forest Ecology and Management, 2005, 205, 139-147.	3.2	41
96	Arbuscular endomycorrhizas are dominant in the organic soil of a neotropical montane cloud forest. Journal of Tropical Ecology, 2004, 20, 125-129.	1.1	52
97	Graffenrieda emarginata (Melastomataceae) forms mycorrhizas with Glomeromycota and with a member of the Hymenoscyphus ericae aggregate in the organic soil of a neotropical mountain rain forest. Canadian Journal of Botany, 2004, 82, 340-356.	1.1	41
98	Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest. Diversity and Distributions, 2003, 9, 351-366.	4.1	84
99	Spatial heterogeneity of throughfall quantity and quality in tropical montane forests in southern Ecuador. , 0, , 393-401.		0